促进个性化学习的理论、技术与方法——对美国《教育传播与技术研究手册(第四版)》的学习与思考之三

被引:36
|
作者
何克抗
机构
[1] 北京师范大学“未来教育”高精尖创新中心
关键词
个性化学习; 学习者建模; 人工智能; 教育数据挖掘; 适应性教学; 自适应教学;
D O I
10.13966/j.cnki.kfjyyj.2017.02.002
中图分类号
G434 [计算机化教学];
学科分类号
摘要
本文首先介绍了"个性化学习"的由来,然后从"促进个性化学习的核心理论——学习者建模""促进个性化学习的关键技术之一——人工智能"和"促进个性化学习的关键技术之二——教育数据挖掘"等三个方面,对促进"个性化学习"的理论、技术与方法作了较全面、深入的论述。由于人工智能技术用于促进个性化学习,主要是通过智能技术所支持的"适应性教学系统"实现,所以本文最后强调,适应性系统的研发必须满足"四维适应"的需求。
引用
收藏
页码:13 / 21
页数:9
相关论文
共 15 条
  • [1] The contribution of learner characteristics in the development of computer-based adaptive learning environments[J] . Mieke Vandewaetere,Piet Desmet,Geraldine Clarebout.Computers in Human Behavior . 2010 (1)
  • [2] A New Paradigm for Intelligent Tutoring Systems: Example-Tracing Tutors[J] . Vincent Aleven,Bruce M. McLaren,Jonathan Sewall,Kenneth R. Koedinger.International Journal of Artificial Intelligence . 2010 (2)
  • [3] Emotion Sensors Go To School[J] . Vania Dimitrova,Riichiro Mizoguchi,Benedict du Boulay,Art Graesser,Ivon Arroyo,David G. Cooper,Winslow Burleson,Beverly Park Woolf,Kasia Muldner,Robert Christopherson.Frontiers in Artificial Intelligence and Applicat . 2009
  • [4] User/tutor optimal learning path in e-learning using comprehensive neuro-fuzzy approach
    Fazlollahtabar, Hamed
    Mahdavi, Iraj
    [J]. EDUCATIONAL RESEARCH REVIEW, 2009, 4 (02) : 142 - 155
  • [5] Evaluating an Intelligent Tutoring System for Design Patterns: the DEPTHS Experience[J] . Journal of Educational Technology & Society . 2009 (2)
  • [6] Combining shared control with variability over surface features: Effects on transfer test performance and task involvement[J] . Computers in Human Behavior . 2008 (2)
  • [7] Selecting learning tasks: Effects of adaptation and shared control on learning efficiency and task involvement[J] . Contemporary Educational Psychology . 2008 (4)
  • [8] The Andes Physics Tutoring System: Lessons Learned[J] . Kurt VanLehn,Collin Lynch,Kay Schulze,Joel A. Shapiro,Robert Shelby,Linwood Taylor,Don Treacy,Anders Weinstein,Mary Wintersgill.International Journal of Artificial Intelligence in Education . 2005 (3)
  • [9] Some Unusual Open Learner Models[J] . Chee-Kit Looi,Gord McCalla,Bert Bredeweg,Joost Breuker,Susan Bull,Abdallatif S. Abu-Issa,Harpreet Ghag,Tim Lloyd.Frontiers in Artificial Intelligence and Applicat . 2005
  • [10] Evaluating Bayesian networks’ precision for detecting students’ learning styles[J] . Patricio García,Analía Amandi,Silvia Schiaffino,Marcelo Campo.Computers & Education . 2005 (3)