Parallel Factories for Smart Industrial Operations:From Big AI Models to Field Foundational Models and Scenarios Engineering

被引:15
作者
Jingwei Lu [1 ,2 ]
Xingxia Wang [2 ,3 ]
Xiang Cheng [2 ,3 ]
Jing Yang [2 ,3 ]
Oliver Kwan [4 ]
Xiao Wang [5 ,6 ,1 ]
机构
[1] Qingdao Academy of Intelligent Industries
[2] The State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences
[3] School of Artificial Intelligence, University of Chinese Academy of Sciences
[4] Motion G, Inc
[5] IEEE
[6] School of Artificial Intelligence, Anhui University
关键词
D O I
暂无
中图分类号
TP399 [在其他方面的应用];
学科分类号
081203 ; 0835 ;
摘要
The rapid advancement of fundamental theories and computing capacity has brought artificial intelligence,internet of things, extended reality, and many other new intelligent technologies into our daily lives. Due to the lack of interpretability and reliability guarantees, it is extremely challenging to apply these technologies directly to real-world industrial systems. Here we present a new paradigm for establishing parallel factories in metaverses to accelerate the deployment of intelligent technologies in real-world industrial systems: QAII-1.0. Based on cyber-physical-social systems,QAII-1.0 incorporates complex social and human factors into the design and analysis of industrial operations and is capable of handling industrial operations involving complex social and human behaviors. In QAII-1.0, a field foundational model called Eu Artisan combined with scenarios engineering is developed to improve the intelligence of industrial systems while ensuring industrial interpretability and reliability. Finally, parallel oil fields in metaverses are established to demonstrate the operating procedure of QAII-1.0.
引用
收藏
页码:2079 / 2086
页数:8
相关论文
共 12 条
[1]  
Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis[J]. Qiyue Wang,Wenhua Jiao,Peng Wang,YuMing Zhang.IEEE/CAA Journal of Automatica Sinica. 2021(02)
[2]  
Parallel Control for Optimal Tracking via Adaptive Dynamic Programming[J]. Jingwei Lu,Qinglai Wei,Fei-Yue Wang.IEEE/CAA Journal of Automatica Sinica. 2020(06)
[3]   Resilient Fault Diagnosis Under Imperfect Observations–A Need for Industry 4.0 Era [J].
Alejandro White ;
Ali Karimoddini ;
Mohammad Karimadini .
IEEE/CAA Journal of Automatica Sinica, 2020, 7 (05) :1279-1288
[4]  
数字孪生与平行系统:发展现状、对比及展望[J]. 杨林瑶,陈思远,王晓,张俊,王成红.自动化学报. 2019(11)
[5]  
平行制造与工业5.0:从虚拟制造到智能制造[J]. 王飞跃,高彦臣,商秀芹,张俊.科技导报. 2018(21)
[6]  
Parallel Learning:a Perspective and a Framework[J]. Li Li,Yilun Lin,Nanning Zheng,Fei-Yue Wang.IEEE/CAA Journal of Automatica Sinica. 2017(03)
[7]   平行系统方法与复杂系统的管理和控制 [J].
王飞跃 .
控制与决策 , 2004, (05) :485-489+514
[8]   Towards artificial general intelligence via a multimodal foundation model [J].
Fei, Nanyi ;
Lu, Zhiwu ;
Gao, Yizhao ;
Yang, Guoxing ;
Huo, Yuqi ;
Wen, Jingyuan ;
Lu, Haoyu ;
Song, Ruihua ;
Gao, Xin ;
Xiang, Tao ;
Sun, Hao ;
Wen, Ji-Rong .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Event-triggered optimal control for discrete-time multi-player non-zero-sum games using parallel control [J].
Lu, Jingwei ;
Wei, Qinglai ;
Wang, Ziyang ;
Zhou, Tianmin ;
Wang, Fei-Yue .
INFORMATION SCIENCES, 2022, 584 :519-535
[10]  
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer[J] . Raffel Colin,Shazeer Noam,Roberts Adam,Lee Katherine,Narang Sharan,Matena Michael,Zhou Yanqi,Li Wei,Liu Peter J..JOURNAL OF MACHINE LEARNING RESEARCH . 2020