深度学习在药物设计与发现中的应用

被引:6
作者
李伟 [1 ]
杨金才 [2 ]
黄牛 [2 ,3 ]
机构
[1] 瑞璞鑫(苏州)生物科技有限公司
[2] 北京生命科学研究所
[3] 清华大学生物医学交叉研究院
关键词
新药研发; 深度学习; 机器学习; 计算化学; 全新药物设计;
D O I
10.16438/j.0513-4870.2019-0189
中图分类号
R91 [药物基础科学];
学科分类号
1007 ;
摘要
在新药创制的药物设计与发现所采用的多种技术中,深度学习仍处于初级阶段,但近年来以其独有的特点,开始应用于虚拟化合物库的生成,化合物活性、代谢和毒性的预测,以及有机合成反应预测等多个方面。与传统的机器学习方法相比,深度学习的预测能力无明显优势,但其无需人工归纳总结数据特征,而是具有学习能力,自动提取特征。与基于第一性原理的计算化学相比,深度学习虽然因为对标注明晰的大数据集的依赖,存在泛化能力的不足,但其以原子为中心进行卷积的表征开始助力计算化学。深度学习作为新兴技术发展迅速,不依赖于大量标注数据的非监督学习等方法在逐渐完善,有望能更好地助力新药研发。
引用
收藏
页码:761 / 767
页数:7
相关论文
共 17 条
[1]   深度学习在化学信息学中的应用 [J].
徐优俊 ;
裴剑锋 .
大数据, 2017, 3 (02) :45-66
[2]   Advancing drug discovery via GPU-based deep learning [J].
Gawehn, Erik ;
Hiss, Jan A. ;
Brown, J. B. ;
Schneider, Gisbert .
EXPERT OPINION ON DRUG DISCOVERY, 2018, 13 (07) :579-582
[3]   The rise of deep learning in drug discovery [J].
Chen, Hongming ;
Engkvist, Ola ;
Wang, Yinhai ;
Olivecrona, Marcus ;
Blaschke, Thomas .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1241-1250
[4]   Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery [J].
Simm, Jaak ;
Klambauer, Guenter ;
Arany, Adam ;
Steijaert, Marvin ;
Wegner, Jorg Kurt ;
Gustin, Emmanuel ;
Chupakhin, Vladimir ;
Chong, Yolanda T. ;
Vialard, Jorge ;
Buijnsters, Peter ;
Velter, Ingrid ;
Vapirev, Alexander ;
Singh, Shantanu ;
Carpenter, Anne E. ;
Wuyts, Roel ;
Hochreiter, Sepp ;
Moreau, Yves ;
Ceulemans, Hugo .
CELL CHEMICAL BIOLOGY, 2018, 25 (05) :611-+
[5]  
De Novo Design of Bioactive Small Molecules by Artificial Intelligence[J] . Dr. Daniel Merk,Lukas Friedrich,Dr. Francesca Grisoni,Prof. Dr. Gisbert Schneider.Molecular Informatics . 2018 (1-2)
[6]  
From machine learning to deep learning: progress in machine intelligence for rational drug discovery[J] . Lu Zhang,Jianjun Tan,Dan Han,Hao Zhu.Drug Discovery Today . 2017 (11)
[7]  
The RCSB protein data bank: integrative view of protein, gene and 3D structural information[J] . Peter W. Rose,Andreas Prlic?,Ali Altunkaya,Chunxiao Bi,Anthony R. Bradley,Cole H. Christie,Luigi Di Costanzo,Jose M. Duarte,Shuchismita Dutta,Zukang Feng,Rachel Kramer Green,David S. Goodsell,Brian Hudson,Tara Kalro,Robert Lowe,Ezra Peisach,Christopher Randle,Alexander S. Rose,Chenghua Shao,Yi-Ping Tao,Yana Valasatava,Maria Voigt,John D. Westbrook,Jesse Woo,Huangwang Yang,Jasmine Y. Young,Christine Z
[8]   The ChEMBL database in 2017 [J].
Gaulton, Anna ;
Hersey, Anne ;
Nowotka, Michal ;
Bento, A. Patricia ;
Chambers, Jon ;
Mendez, David ;
Mutowo, Prudence ;
Atkinson, Francis ;
Bellis, Louisa J. ;
Cibrian-Uhalte, Elena ;
Davies, Mark ;
Dedman, Nathan ;
Karlsson, Anneli ;
Magarinos, Maria Paula ;
Overington, John P. ;
Papadatos, George ;
Smit, Ines ;
Leach, Andrew R. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D945-D954
[9]  
BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry[J] . Igor V. Tetko,Ola Engkvist,Uwe Koch,Jean‐Louis Reymond,Hongming Chen.Molecular Informatics . 2016 (11-1)
[10]   A renaissance of neural networks in drug discovery [J].
Baskin, Igor I. ;
Winkler, David ;
Tetko, Igor V. .
EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (08) :785-795