The uniqueness of meromorphic fuctions sharing one value was studied. Using the concept of weighted sharing, we proved the following theorem. For two meromorphic functions f and g which are not polynominals of degree less than a positive integer k, if f nf (k) and g ng (k) share (1,2), where n is another positive integer not less than k+10, then f nf (k) identically equals g ng (k) or f nf (k)g ng (k) identically equals 1. Particularly for k =1, we improved the results of Yang [Yang CC, Hua XH, Uniqueness and value-sharing of meromorphic functions, Annales Academi? Scientiarum Fennic? Mathematica, 1997, 22: 395-406], and Fang [Fang ML, Hua XH, Entire function that share one value, Journal of Nanjing University, 1996, 13(1): 44-48. (In Chinese)].