Electric field manipulation of magnetic skyrmions

被引:0
|
作者
Ya-Dong Wang [1 ]
Zhi-Jian Wei [1 ]
Hao-Ran Tu [2 ]
Chen-Hui Zhang [3 ]
Zhi-Peng Hou [1 ]
机构
[1] Guangdong Provincial Key Laboratory of Optical Information Material and Technology & Institute for Advanced Materials,South China Academy of Advanced Optoelectronics,South China Normal University
[2] Dongguan University of Technology
[3] Physical Science and Engineering Division (PSE),King Abdullah University of Science and Technology (KAUST)
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Magnetic skyrmions are vortex-like swirling spin textures that are promising candidates for carrying information bits in future magnetic memories or logic circuits.To build skyrmionic devices,researchers must electrically manipulate magnetic skyrmions to enable easy integration into modern semiconductor technology.This operation generally uses a spin-polarized current,which unavoidably causes high energy dissipation and Joule heating.Thus,the electric-field strategy is a hopeful alternative for electrically manipulating the skyrmions due to the strategy’s negligible Joule heating and low energy cost.In this review,we systematically summarize the theoretical and experimental development of the electricalfield manipulation of magnetic skyrmions over the past decade.We review the following magnetic systems and physical mechanisms:(ⅰ) ultra-thin multilayer films with accumulation and release of interfacial charge,(ⅱ) singlephase multiferroic material with magneto-electric coupling,(ⅲ) ferromagnetic/ferroelectric(FM/FE) multiferroic heterostructure with magneto-elastic coupling.Finally,we consider future developmental trends in the electric-field manipulation of magnetic skyrmions and other topological magnetic domain structures.
引用
收藏
页码:4000 / 4014
页数:15
相关论文
共 50 条
  • [1] Electric field manipulation of magnetic skyrmions
    Ya-Dong Wang
    Zhi-Jian Wei
    Hao-Ran Tu
    Chen-Hui Zhang
    Zhi-Peng Hou
    Rare Metals, 2022, 41 : 4000 - 4014
  • [2] Electric field manipulation of magnetic skyrmions
    Wang, Ya-Dong
    Wei, Zhi-Jian
    Tu, Hao-Ran
    Zhang, Chen-Hui
    Hou, Zhi-Peng
    RARE METALS, 2022, 41 (12) : 4000 - 4014
  • [3] Electric-field guiding of magnetic skyrmions
    Upadhyaya, Pramey
    Yu, Guoqiang
    Amiri, Pedram Khalili
    Wang, Kang L.
    PHYSICAL REVIEW B, 2015, 92 (13)
  • [4] Electric field control of Skyrmions in magnetic nanodisks
    Nakatani, Y.
    Hayashi, M.
    Kanai, S.
    Fukami, S.
    Ohno, H.
    APPLIED PHYSICS LETTERS, 2016, 108 (15)
  • [5] Creation and annihilation of artificial magnetic skyrmions with the electric field
    Cheng, Jun
    Sun, Liang
    Zhang, Yike
    Ji, Tongzhou
    Cao, Rongxing
    Miao, Bingfeng
    Zhao, Yonggang
    Ding, Haifeng
    CHINESE PHYSICS B, 2024, 33 (03)
  • [6] Creation and annihilation of artificial magnetic skyrmions with the electric field
    程军
    孙亮
    张一可
    吉同舟
    曹荣幸
    缪冰锋
    赵永刚
    丁海峰
    Chinese Physics B, 2024, 33 (03) : 158 - 163
  • [7] Electric Manipulation of Skyrmions in Metals and Insulators
    Hoffmann, A.
    Jiang, W.
    Upadhyaya, P.
    Yang, Q.
    Yu, G.
    Zhang, W.
    Jungfleisch, M.
    Fradin, F. Y.
    Pearson, J. E.
    Wang, Z.
    Wong, K. L.
    Akyol, M.
    Chang, L.
    Lang, M.
    Fan, Y.
    Wen, Q.
    Zhang, H.
    Schwartz, R. N.
    Tserkovnyak, Y.
    Wang, K. L.
    Heinonen, O.
    Velthuis, S. G. Te
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [8] Electric and Magnetic Manipulation in Graphene Absorption by the Electric Field
    Da, H. X.
    Li, Zhenya
    Sun, L. Z.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 515 - 520
  • [9] Controlling magnetic skyrmions in co/graphene via electric field
    Pan, Y. F.
    Huang, C.
    Fan, J. . Y.
    Shi, D. N.
    Zhu, Y.
    Ma, C. L.
    DIAMOND AND RELATED MATERIALS, 2025, 153
  • [10] Electric-field-driven switching of individual magnetic skyrmions
    Hsu P.-J.
    Kubetzka A.
    Finco A.
    Romming N.
    Von Bergmann K.
    Wiesendanger R.
    Nature Nanotechnology, 2017, 12 (2) : 123 - 126