Singularly perturbed Neumann problem for fractional Schrdinger equations

被引:0
|
作者
Guoyuan Chen [1 ]
机构
[1] School of Data Sciences, Zhejiang University of Finance & Economics
基金
中国国家自然科学基金;
关键词
Neumann problem; nonlinear fractional Schrdinger equations; singular perturbation; fractional Laplacian;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrdinger equations with subcritical exponent. For some smooth bounded domain ?  R~n, our boundary condition is given by∫?u(x)-u(y)/|x-y|n+2sdy = 0 for x ∈ R~n\?.We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on Rn.
引用
收藏
页码:695 / 708
页数:14
相关论文
共 50 条
  • [1] Singularly perturbed Neumann problem for fractional Schrödinger equations
    Guoyuan Chen
    Science China Mathematics, 2018, 61 : 695 - 708
  • [2] Singularly perturbed Neumann problem for fractional Schrodinger equations
    Chen, Guoyuan
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 695 - 708
  • [3] A Unified Approach to Singularly Perturbed Quasilinear Schrödinger Equations
    Daniele Cassani
    Youjun Wang
    Jianjun Zhang
    Milan Journal of Mathematics, 2020, 88 : 507 - 534
  • [4] Infinitely many new solutions for singularly perturbed Schrödinger equations
    Li, Benniao
    Long, Wei
    Yang, Jianfu
    NONLINEARITY, 2025, 38 (01)
  • [5] Semiclassical states for non-cooperative singularly perturbed fractional Schrödinger systems
    Suhong Li
    Limeng Wu
    Xiaoyun Yue
    Lingmin Zhang
    Boundary Value Problems, 2022
  • [6] Optimal control for a nonlinear Schrödinger problem perturbed by multiplicative fractional noise
    Grecksch, Wilfried
    Lisei, Hannelore
    Breckner, Brigitte E.
    OPTIMIZATION, 2024, 73 (11) : 3411 - 3435
  • [7] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [8] Multipeak solutions for a singularly perturbed Neumann problem
    Dancer, EN
    Yan, SS
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) : 241 - 262
  • [9] On a singularly perturbed Neumann problem with the critical exponent
    Ghoussoub, N
    Gui, CF
    Zhu, MJ
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 1929 - 1946
  • [10] On the relation between Schrödinger and von Neumann equations
    V. I. Man'ko
    G. Marmo
    E. C. G. Sudarshan
    F. Zaccaria
    Journal of Russian Laser Research, 1999, 20 : 421 - 437