The population and decay evolution of a qubit under the time-convolutionless master equation

被引:0
|
作者
黄江 [1 ]
方卯发 [1 ]
刘翔 [1 ]
机构
[1] Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,and Department of Physics,Hunan Normal University
基金
中国国家自然科学基金;
关键词
Markovian; non-Markovian; time-convolutionless master equation;
D O I
暂无
中图分类号
O413.1 [量子力学(波动力学、矩阵力学)];
学科分类号
070205 ; 0809 ;
摘要
We consider the population and decay of a qubit under the electromagnetic environment.Employing the timeconvolutionless master equation,we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion.The Jaynes-Cummings model on resonance is investigated.Some figures clearly show the different evolution behaviours.The reasons are interpreted in the paper.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 50 条
  • [1] The population and decay evolution of a qubit under the time-convolutionless master equation
    Huang Jiang
    Fang Mao-Fa
    Liu Xiang
    CHINESE PHYSICS B, 2012, 21 (01)
  • [2] Time-convolutionless master equation for mesoscopic electron-phonon systems
    Pereverzev, Andrey
    Bittner, Eric R.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (10):
  • [3] Diagrammatic representation and nonperturbative approximations of the exact time-convolutionless master equation
    Gu, Bing
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (20):
  • [4] Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order
    Timm, Carsten
    PHYSICAL REVIEW B, 2011, 83 (11):
  • [5] Nonperturbative time-convolutionless quantum master equation from the path integral approach
    Nan, Guangjun
    Shi, Qiang
    Shuai, Zhigang
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (13):
  • [6] EQUIVALENCE OF TIME-CONVOLUTIONLESS MASTER EQUATIONS AND GENERALIZED LANGEVIN EQUATIONS
    HANGGI, P
    TALKNER, P
    PHYSICS LETTERS A, 1978, 68 (01) : 9 - 11
  • [7] Time-Convolutionless Master Equations for Composite Open Quantum Systems
    Karasev A.Y.
    Teretenkov A.E.
    Lobachevskii Journal of Mathematics, 2023, 44 (6) : 2051 - 2064
  • [8] Recursive approach for non-Markovian time-convolutionless master equations
    Gasbarri, G.
    Ferialdi, L.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [9] Diffusive behaviour of solitons described by time-convolutionless generalized master equations
    Desposito, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (06): : 1147 - 1154
  • [10] Time-convolutionless stochastic unraveling of non-markovian quantum master equations
    Breuer, HP
    Kappler, B
    Petruccione, F
    DECOHERENCE: THEORETICAL, EXPERIMENTAL AND CONCEPTUAL PROBLEMS, 2000, 538 : 233 - 241