人工智能在医学影像CAD中的应用

被引:23
作者
潘亚玲
王晗琦
陆勇
机构
[1] 上海交通大学医学院附属瑞金医院
关键词
人工智能; 机器学习; 深度学习; 卷积神经网络; 计算机辅助诊断;
D O I
10.19300/j.2019.z6565zt
中图分类号
R311 [医用数学]; TP18 [人工智能理论];
学科分类号
1001 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
深度学习是目前人工智能领域备受关注和极具应用前景的机器学习算法,有望革新传统计算机辅助诊断(CAD)系统,在精准影像诊断中发挥重要作用。就人工智能、机器学习、深度学习、卷积神经网络、迁移学习的基本概念,以及基于深度学习的CAD系统在肺、乳腺、心脏、颅脑、肝脏、前列腺、骨骼的影像及病理学中的研究现状予以综述。
引用
收藏
页码:3 / 7
页数:5
相关论文
共 14 条
[1]  
Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI[J] . Ling-Li Zeng,Huaning Wang,Panpan Hu,Bo Yang,Weidan Pu,Hui Shen,Xingui Chen,Zhening Liu,Hong Yin,Qingrong Tan,Kai Wang,Dewen Hu.EBioMedicine . 2018
[2]  
Deep Convolutional Neural Networks for breast cancer screening[J] . Hiba Chougrad,Hamid Zouaki,Omar Alheyane.Computer Methods and Programs in Biomedicine . 2018
[3]  
Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J] . Mohammed A. Al-masni,Mugahed A. Al-antari,Jeong-Min Park,Geon Gi,Tae-Yeon Kim,Patricio Rivera,Edwin Valarezo,Mun-Taek Choi,Seung-Moo Han,Tae-Seong Kim.Computer Methods and Programs in Biomedicine . 2018
[4]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[5]  
Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study[J] . Valentina Giannini,Simone Mazzetti,Enrico Armando,Silvia Carabalona,Filippo Russo,Alessandro Giacobbe,Giovanni Muto,Daniele Regge.European Radiology . 2017 (10)
[6]   Fully Automated Deep Learning System for Bone Age Assessment [J].
Lee, Hyunkwang ;
Tajmir, Shahein ;
Lee, Jenny ;
Zissen, Maurice ;
Yeshiwas, Bethel Ayele ;
Alkasab, Tarik K. ;
Choy, Garry ;
Do, Synho .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :427-441
[7]   Detection and Labeling of Vertebrae in MR Images Using Deep Learning with Clinical Annotations as Training Data [J].
Forsberg, Daniel ;
Sjoblom, Erik ;
Sunshine, Jeffrey L. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :406-412
[8]  
MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J] . Lin Huang,Wei Xia,Bo Zhang,Bensheng Qiu,Xin Gao.Computer Methods and Programs in Biomedicine . 2017
[9]  
Computer-aided grading of gliomas based on local and global MRI features[J] . Kevin Li-Chun Hsieh,Chung-Ming Lo,Chih-Jou Hsiao.Computer Methods and Programs in Biomedicine . 2017
[10]  
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J] . M.R. Avendi,Arash Kheradvar,Hamid Jafarkhani.Medical Image Analysis . 2016