Reconstruction of Tomographic Images from a Few Views by New Maximum Entropy Approach

被引:0
|
作者
CHEN Shao-hua (College of Phys. & Electron. Techn.
机构
关键词
Maximum entropy; Tomographic reconstruction; Algorithm;
D O I
暂无
中图分类号
TP391.4 [模式识别与装置];
学科分类号
0811 ; 081101 ; 081104 ; 1405 ;
摘要
A new algorithm for the reconstruction of tomographic images from a few views is presented. A variable metric method is used to solve the unconstrained optimization problem which resulted from the analysis by use of the maximum ent ropy formalism. The numerical simulation is used to study the reconstruction eff ect on the different asymmetric functions. The results show that the reconstruct ion accuracy is satisfactory.
引用
收藏
页码:200 / 203
页数:4
相关论文
共 50 条
  • [1] Maximum entropy image reconstruction from a few views
    Chen, SH
    Wang, Q
    VISUALIZATION AND OPTIMIZATION TECHNIQUES, 2001, 4553 : 95 - 99
  • [2] RECONSTRUCTION OF TOMOGRAPHIC-IMAGES FROM SPARSE DATA SETS BY A NEW FINITE-ELEMENT MAXIMUM-ENTROPY APPROACH
    SMITH, RT
    ZOLTANI, CK
    KLEM, GJ
    COLEMAN, MW
    APPLIED OPTICS, 1991, 30 (05): : 573 - 582
  • [3] A coordinate ascent approach to tomographic reconstruction of label images from a few projections
    Liao, HY
    Herman, GT
    DISCRETE APPLIED MATHEMATICS, 2005, 151 (1-3) : 184 - 197
  • [4] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    I. Abraham
    R. Abraham
    M. Bergounioux
    G. Carlier
    Applied Mathematics & Optimization, 2017, 75 : 55 - 73
  • [5] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    Abraham, I.
    Abraham, R.
    Bergounioux, M.
    Carlier, G.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 75 (01): : 55 - 73
  • [6] Variational Methods for Tomographic Reconstruction with Few Views
    Maïtine Bergounioux
    Isabelle Abraham
    Romain Abraham
    Guillaume Carlier
    Erwan Le Pennec
    Emmanuel Trélat
    Milan Journal of Mathematics, 2018, 86 : 157 - 200
  • [7] Variational Methods for Tomographic Reconstruction with Few Views
    Bergounioux, Maitine
    Abraham, Isabelle
    Abraham, Romain
    Carlier, Guillaume
    Le Pennec, Erwan
    Trelat, Emmanuel
    MILAN JOURNAL OF MATHEMATICS, 2018, 86 (02) : 157 - 200
  • [8] MAXIMUM BOUNDED ENTROPY - APPLICATION TO TOMOGRAPHIC RECONSTRUCTION
    FRIEDEN, BR
    ZOLTANI, CK
    APPLIED OPTICS, 1985, 24 (02): : 201 - 207
  • [9] MAXIMUM BOUNDED ENTROPY - APPLICATION TO TOMOGRAPHIC RECONSTRUCTION
    FRIEDEN, BR
    ZOLTANI, CK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (12): : 1327 - 1327
  • [10] From Maximum Entropy to Maximum Entropy Production: A New Approach
    Virgo, Nathaniel
    ENTROPY, 2010, 12 (01) : 107 - 126