Lp-REGULARITY AND HOLDER CONTINUITY FOR SOLUTIONS OF SECOND ORDER PARABOLIC SYSTEMS

被引:0
|
作者
严子谦
机构
[1] Changchun
[2] Jilin University
关键词
parabolic systems; systems of triangular form; regularity; nonlinear analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Under both controllable and natural growth conditions, the spatial derivatives Duof a solution u∈ L(0, T; H(Q , R)) ∩L(0, T; L(Q , R)) (or∩L(Q , R)) of a nonlinearparabolic system u- DA(x, t, u, Du) = B(x, t, u, Du), i = 1,…, N, (x, t) ∈Q,in fact, belong to L(Q,R) for some p>2. Every solution of a quasilinear parabolic system u- D[A(x, t, u)Du+α(x, t, u)] = B(x, t, u, Du), i = 1, …, Nis Holder continuous in an open set Q?Q with H(QQ)=0. If A(x,t,u)=0 when j>i, and the growth of B(x, t, u, p) w. r. t. |p| is less than 2, then Q=Q. If Aand αare Holder continuous, then so are Du in Q.
引用
收藏
页码:154 / 167
页数:14
相关论文
共 50 条