Network pharmacology and molecular docking-based analyses to predict the potential mechanism of Huangqin decoction in treating colorectal cancer

被引:0
|
作者
Ying-Jie Li [1 ]
Dong-Xin Tang [2 ]
Hong-Ting Yan [1 ]
Bing Yang [2 ]
Zhu Yang [1 ]
Feng-Xi Long [1 ]
机构
[1] Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine
[2] Digestive Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
R285 [中药药理学];
学科分类号
1008 ;
摘要
BACKGROUND To analyze the potential action mechanism of Huangqin decoction(HQD) in colorectal cancer(CRC) treatment on the basis of network pharmacology and molecular docking.AIM To investigate the molecular mechanisms of HQD for CRC treatment by using network pharmacology and molecular docking.METHODS All HQD active ingredients were searched using the Systematic Pharmacology and Traditional Chinese Medicine Systems Pharmacology databases and the Bioinformatics Analysis Tool for Molecular Mechanisms in traditional Chinese medicine. Then, the targets of the active ingredients were screened. The abbreviations of protein targets were obtained from the UniProt database. A “drug–compound–target” network was constructed to screen for some main active ingredients. Some targets related to the therapeutic effect of CRC were obtained from the GeneCards, DisGeNET, Therapeutic Target Database, and Online Mendelian Inheritance in Man databases. The intersection of targets of Chinese herbs and CRC was taken. A Venn diagram was drawn to construct the intersection target interactions network by referring to the STRING database. Topological analysis of the protein interaction network was performed using Cytoscape 3.7.2 software to screen the core HQD targets for CRC. The core targets were imported into the DAVID 6.8 analysis website for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and visualization. Finally, molecular docking was performed using AutoDockTool and PyMOL for validation.RESULTS In total, 280 potential drug-active ingredients were present in HQD, including 1474 targets of the drug-active ingredients. The main active ingredients identified were betulin, tetrahydropalmatine, and quercetin. In total, 10249 CRC-related targets and 1014 drug-disease intersecting targets were identified, including 28 core targets of action such as Jun proto-oncogene, AP-1 transcription factor subunit, signal transducer and activator of transcription 3, tumor protein p53, vascular endothelial growth factor, and AKT serine/threonine kinase 1. The gene ontology enrichment functional analysis yielded 503 enrichment results, including 406 biological processes that were mainly related to the positive regulation of both gene expression and transcription and cellular response to hypoxia, etc. In total, 38 cellular components were primarily related to polymer complexes, transcription factor complexes, and platelet alpha granule lumen. Then, 59 molecular functions were closely related to the binding of enzymes, homologous proteins, and transcription factors. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 139 enrichment results, involving epidermal growth factor receptor tyrosine kinase inhibitor resistance and HIF-1 and mitogen-activated protein kinase signaling pathways.CONCLUSION HQD can play a role in CRC treatment through the “multi-component-target–pathway”. The active ingredients betulin, tetrahydropalmatine, and quercetin may act on targets such as Jun proto-oncogene, AP-1 transcription factor subunit, signal transducer and activator of transcription 3, tumor protein p53, vascular endothelial growth factor, and AKT serine/threonine kinase 1, which in turn regulate HIF-1 and mitogen-activated protein kinase signaling pathways in CRC treatment. The molecular docking junction clarified that all four key target proteins could bind strongly to the main HQD active ingredients. This indicates that HQD could slow down CRC progression by modulating multiple targets and signaling pathways.
引用
收藏
页码:4553 / 4566
页数:14
相关论文
共 50 条
  • [1] Network pharmacology and molecular docking-based analyses to predict the potential mechanism of Huangqin decoction in treating colorectal cancer
    Li, Ying-Jie
    Tang, Dong-Xin
    Yan, Hong-Ting
    Yang, Bing
    Yang, Zhu
    Long, Feng-Xi
    WORLD JOURNAL OF CLINICAL CASES, 2023, 11 (19) : 4553 - 4566
  • [2] Exploring potential network pharmacology-and molecular docking-based mechanism of melittin in treating rheumatoid arthritis
    Yang, Linfu
    Zhao, Wenzheng
    Gong, Xueyang
    Yue, Dan
    Liu, Yiqiu
    Tian, Yakai
    Dong, Kun
    MEDICINE, 2023, 102 (32) : E34728
  • [3] Network pharmacology- and molecular docking-based analyses of the antihypertensive mechanism of Ilex kudingcha
    Liao, Fei
    Yousif, Muhammad
    Huang, Ruya
    Qiao, Yanlong
    Hu, Yanchun
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [4] Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis
    Li, Xing
    Wei, Shizhang
    Niu, Shengqi
    Ma, Xiao
    Li, Haotian
    Jing, Manyi
    Zhao, Yanling
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [5] Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation
    Lu, Shuai
    Sun, Xibo
    Zhou, Zhongbao
    Tang, Huazhen
    Xiao, Ruixue
    Lv, Qingchen
    Wang, Bing
    Qu, Jinxiu
    Yu, Jinxuan
    Sun, Fang
    Deng, Zhuoya
    Tian, Yuying
    Li, Cong
    Yang, Zhenpeng
    Yang, Penghui
    Rao, Benqiang
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [6] Therapeutic targets and molecular mechanisms of Huangqin decoction in liver cancer: a network pharmacology and molecular docking approach
    Lan, Ting
    Wang, Juan
    Zeng, Ronghao
    Gao, Can
    Liu, Xiao
    Luo, Lixiang
    Liang, Yingwen
    Guo, Zhencong
    Wang, Weijia
    Hong, Ming
    JOURNAL OF HERBAL MEDICINE, 2024, 43
  • [7] Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal Antihypertensive Effect of Gedan Jiangya Decoction
    Liu, Hanxing
    Mohammed, Shadi A. D.
    Lu, Fang
    Chen, Pingping
    Wang, Yu
    Liu, Shumin
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [8] Network Pharmacology and Molecular Docking-Based Prediction of the Mechanism of Qianghuo Shengshi Decoction against Rheumatoid Arthritis
    Zeng, Zhihao
    Hu, Jiaoting
    Jiang, Jieyi
    Xiao, Guanlin
    Yang, Ruipei
    Li, Sumei
    Li, Yangxue
    Huang, Huajing
    Zhong, Huixian
    Bi, Xiaoli
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [9] Discussion on the molecular mechanism of Duhuo Jisheng decoction in treating osteoarthritis based on network pharmacology and molecular docking
    Yang, Liu
    Zheng, Senwang
    Hou, Ajiao
    Wang, Song
    Zhang, Jiaxu
    Yu, Huan
    Wang, Xuejiao
    Lan, Wei
    MEDICINE, 2022, 101 (42) : E31009
  • [10] The Potential Mechanism of Liujunzi Decoction in the Treatment of Breast Cancer based on Network Pharmacology and Molecular Docking Technology
    Sun, Mei
    Lv, Feng
    Qin, Chunmeng
    Du, Dan
    Li, Wenjun
    Liu, Songqing
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (09) : 702 - 726