Poincaré and Poincaré-Cartan integral invariants of a generalized Hamiltonian system

被引:0
|
作者
Yongxin GUO
机构
关键词
Birkhoffian systems; symplectic structure; integral invariants;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Without Darboux’s transformation, the traditional Hamiltonian formulation of dynamical systems is only suitable to conservative systems or self-adjoint systems. Based on an extension of dynamic space of Birkhoffian systems to a generalized phase space by intro- ducing dummy variables, a generalized Hamiltonian canonical formulation of general systems is constructed, which admits symplectic structure. There exist integral invariants of Poincare and Poincare-Cartan’s type for such systems.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [1] Poincaré-cartan integral invariants of Birkhoffian systems
    Guo Yong-xin
    Shang Mei
    Luo Shao-kai
    Applied Mathematics and Mechanics, 2003, 24 (1) : 68 - 72
  • [2] POINCAR-CARTAN INTEGRAL INVARIANTS OF BIRKHOFFIAN SYSTEMS
    郭永新
    尚玫
    罗绍凯
    AppliedMathematicsandMechanics(EnglishEdition), 2003, (01) : 68 - 72
  • [3] Poincaré-Cartan Integral Variants and Invariants of Nonholonomic Constrained Systems
    Y. X. Guo
    M. Shang
    S. K. Luo
    F. X. Mei
    International Journal of Theoretical Physics, 2001, 40 : 1197 - 1205
  • [4] Quantal Poincaré-Cartan Integral Invariant for Field Theory
    Zhang Ying
    Li Ziping
    International Journal of Theoretical Physics, 2004, 43 : 2423 - 2433
  • [5] Integral representations and the generalized Poincaré inequality on Carnot groups
    E. A. Plotnikova
    Siberian Mathematical Journal, 2008, 49 : 339 - 352
  • [6] Generalized Noether Theorem and Poincaré-Cartan Integral Invariant for Singular High-order Lagrangian in Fields Theories
    李子平
    Science China Mathematics, 1993, (10) : 1212 - 1225
  • [7] Poincar, integral invariants and separating manifolds of equilibrium open evaporation diagrams
    Serafimov, L. A.
    Frolokova, A. K.
    Frolkova, A. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2013, 47 (02) : 124 - 127
  • [8] Poincaré integral invariants and separating manifolds of equilibrium open evaporation diagrams
    L. A. Serafimov
    A. K. Frolokova
    A. V. Frolkova
    Theoretical Foundations of Chemical Engineering, 2013, 47 : 124 - 127
  • [9] LIE-CARTAN DIFFERENTIAL INVARIANTS AND POINCAR′E-MOSER NORMAL FORMS: CONFLUENCES
    Chen, Zhangchi
    Foo, Wei Guo
    Merker, Joel
    Ta, The-Anh
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2023, 18 (02): : 133 - 184
  • [10] Generalized doubling meets Poincaré
    Colin Hinde
    Peter Petersen
    The Journal of Geometric Analysis, 2007, 17 : 485 - 494