Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system

被引:0
|
作者
LI HaiLiang 1 & ZHANG Ting 2
2 Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
compressible Navier-Stokes-Poisson system; optimal decay rate;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
We consider the three-dimensional compressible Navier-Stokes-Poisson system where the electric field of the internal electrostatic potential force is governed by the self-consistent Poisson equation.If the Fourier modes of the initial data are degenerate at the low frequency or the initial data decay fast at spatial infinity,we show that the density converges to its equilibrium state at the L 2-rate (1+t)(-7/4) or L ∞-rate (1+t)(-5/2),and the momentum decays at the L 2-rate (1+t)(-5/4) or L ∞-rate (1+t)(-2).These convergence rates are shown to be optimal for the compressible Navier-Stokes-Poisson system.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 50 条