针对传统分类方法只采用一种分类器而存在的片面性,分类精度不高,以及支持向量机分类超平面附近点易错分的问题,提出了基于支持向量机(SVM)和k-近邻(KNN)的多特征融合方法。在该算法中,设样本集特征可分为L组,先用SVM算法根据训练集中每组特征数据构造分类超平面,共构造L个;其次用SVM-KNN方法对测试集进行测试,得到由L组后验概率构成的决策轮廓矩阵;最后将其进行多特征融合,输出最终的分类结果。用鸢尾属植物数据进行了数值实验,实验结果表明:采用基于SVM-KNN的多特征融合方法比单独使用一种SVM或SVM-KNN方法的平均预测精度分别提高了28.7%和1.9%。