基于深度学习的微博情感分析

被引:103
作者
梁军 [1 ]
柴玉梅 [1 ]
原慧斌 [2 ]
昝红英 [1 ]
刘铭 [1 ]
机构
[1] 郑州大学信息工程学院
[2] 中国核科技信息与经济研究院
关键词
深度学习; 微博情感分析; 递归神经网络; 自编码;
D O I
暂无
中图分类号
TP391.1 [文字信息处理]; TP393.092 [];
学科分类号
081203 ; 0835 ; 080402 ;
摘要
中文微博情感分析旨在发现用户对热点事件的观点态度。已有的研究大多使用SVM、CRF等传统算法根据手工标注情感特征对微博情感进行分析。该文主要探讨利用深度学习来做中文微博情感分析的可行性,采用递归神经网络来发现与任务相关的特征,避免依赖于具体任务的人工特征设计,并根据句子词语间前后的关联性引入情感极性转移模型加强对文本关联性的捕获。该文提出的方法在性能上与当前采用手工标注情感特征的方法相当,但节省了大量人工标注的工作量。
引用
收藏
页码:155 / 161
页数:7
相关论文
共 2 条
[1]   基于监督学习的中文情感分类技术比较研究 [J].
唐慧丰 ;
谭松波 ;
程学旗 .
中文信息学报, 2007, (06) :88-94+108
[2]   基于HowNet的词汇语义倾向计算 [J].
朱嫣岚 ;
闵锦 ;
周雅倩 ;
黄萱菁 ;
吴立德 .
中文信息学报, 2006, (01) :14-20