方程x'(t)=ax(t)+bx(3[(t+1)/3])的数值稳定性分析(英文)

被引:1
|
作者
王琦 [1 ]
汪小明 [1 ]
陈学松 [1 ]
机构
[1] 广东工业大学应用数学学院
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Euler-Maclaurin方法; 分段连续项; 稳定性; 数值解;
D O I
10.13548/j.sxzz.20150522.003
中图分类号
O241.81 [常微分方程的数值解法];
学科分类号
070102 ;
摘要
本文研究了分段连续型微分方程x’(t)=ax(t)+bx(3[(t+1)/3])Euler-Maclaurin方法的数值稳定性问题.利用特征分析的方法,获得了数值解稳定的充分条件,进而证明了Euler-Maclaurin方法保持了精确解的稳定性.最后给出了一些数值例子.
引用
收藏
页码:955 / 962
页数:8
相关论文
共 12 条
  • [1] 随机延迟微分方程的数值方法的收敛性和稳定性(英文)
    程生敏
    周少波
    [J]. 数学杂志, 2014, 34 (06) : 1073 - 1084
  • [2] 时滞微分方程和脉冲时滞微分方程解的存在唯一性
    王晓
    崔诚
    肖莉
    刘安平
    [J]. 数学杂志, 2013, 33 (04) : 683 - 688
  • [3] Stability analysis of Runge–Kutta methods for systems u ′ ( t ) = Lu ( t ) + Mu ([t] )[J] . Hui Liang,M.Z. Liu,Z.W. Yang. Applied Mathematics and Computation . 2014
  • [4] On convergence of difference schemes for delay parabolic equations
    Ashyralyev, Allaberen
    Agirseven, Deniz
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (07) : 1232 - 1244
  • [5] Oscillation Criteria of Certain Third-Order Differential Equation with Piecewise Constant Argument[J] . Haihua Liang,Gen-qiang Wang,Samir H. Saker. Journal of Applied Mathematics . 2012
  • [6] Comparison principle and stability of differential equations with piecewise constant arguments[J] . Mohamad S. Alwan,Xinzhi Liu,Wei-Chau Xie. Journal of the Franklin Institute . 2012
  • [7] Global stability of nonautonomous logistic equations with a piecewise constant delay[J] . Huaixing Li,Yoshiaki Muroya,Yukihiko Nakata,Rong Yuan. Nonlinear Analysis: Real World Applications . 2009 (3)
  • [8] Preservation of oscillations of the Runge–Kutta method for equation x ′ ( t ) + a x ( t ) + a 1 x ([t ? 1] ) = 0[J] . M.Z. Liu,J.F. Gao,Z.W. Yang. Computers and Mathematics with Applications . 2009 (6)
  • [9] Dissipativity of Runge–Kutta methods for neutral delay differential equations with piecewise constant delay[J] . Wan-Sheng Wang,Shou-Fu Li. Applied Mathematics Letters . 2007 (9)
  • [10] Stability of the Euler–Maclaurin methods for neutral differential equations with piecewise continuous arguments[J] . W.J. Lv,Z.W. Yang,M.Z. Liu. Applied Mathematics and Computation . 2006 (2)