Local Covering Subgroups in Finite Groups

被引:0
|
作者
Guo Hua QIAN [1 ]
机构
[1] Department of Mathematics, Changshu Institute of Technology
关键词
D O I
暂无
中图分类号
O152.1 [有限群论];
学科分类号
070104 ;
摘要
A subgroup A of a finite group G is called a local covering subgroup of G if A~G=AB for all maximal G-invariant subgroup B of A~G=(A~g,g∈G).Let p be a prime and d be a positive integer.Assume that all subgroups of p~d,and all cyclic subgroups of order 4 when p~d=2 and a Sylow2-subgroup of G is nonabelian,of G are local covering subgroups.Then G is p-supersolvable whenever p~d=p or p~d≤(|G|)or p~d≤|O(G)|/p.
引用
收藏
页码:768 / 774
页数:7
相关论文
共 50 条
  • [1] Local Covering Subgroups in Finite Groups
    Guo Hua Qian
    Acta Mathematica Sinica, English Series, 2021, 37 : 768 - 774
  • [2] Local Covering Subgroups in Finite Groups
    Qian, Guo Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 768 - 774
  • [3] Local partial covering subgroups in finite groups
    Qian, Guohua
    JOURNAL OF ALGEBRA, 2021, 572 : 129 - 145
  • [4] Finite groups with local covering p-subgroups
    Tang, Feng
    Qian, Guohua
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [5] Groups with a Finite Covering by Isomorphic Abelian Subgroups
    Foguel, T'uval S.
    Ragland, Matthew F.
    COMPUTATIONAL GROUP THEORY AND THE THEORY OF GROUPS, 2008, 470 : 75 - 88
  • [6] ON GENERALIZED COVERING SUBGROUPS AND NORMALIZERS OF FINITE SOLUBLE GROUPS
    EZQUERRO, LM
    ARCHIV DER MATHEMATIK, 1986, 47 (05) : 385 - 394
  • [7] On Fω-projectors and Fω-covering subgroups of finite groups
    Sorokina, M. M.
    Novikova, D. G.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2024, 24 (04): : 526 - 535
  • [8] Covering groups with subgroups
    Bryce, RA
    Fedri, V
    Serena, L
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (03) : 469 - 476
  • [9] COVERING SUBGROUPS IN FINITE PRIMITIVE pi-SOLVABLE GROUPS
    Covaci, Rodica
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (01): : 97 - 105
  • [10] KRONECKER CLASSES OF FIELDS AND COVERING SUBGROUPS OF FINITE-GROUPS
    PRAEGER, CE
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 57 : 17 - 34