Extensions of Vietoris’s Inequalities (Ⅱ)

被引:0
|
作者
Gavin Brown
戴峰
王昆扬
机构
[1] University of Sydney NSW 2006,Australia,Department of Mathematical and Statistical Sciences CAB 632
[2] University of Alberta,Edmonton,Alberta,T6G 2G1,Canada,Department of Mathematics Beijing Normal University,Beijing,100875,P.R.China
基金
澳大利亚研究理事会;
关键词
Extensions of Vietoris’s Inequalities;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
ItwasshownbyVietorisin1958thatforn≥1andx∈(0,π),whereC0=C1=1andHerethecoefficientscanbeexpressedintermsofgammafunctions:OnewaytoextendVietoris’sinequality(1)isviatakingthecoefficientsin(1)tobewithβ<1.Inthisdirection,thecurrentauthorsrecentlyhaveprovedthefollowingresult:For0<x<πandn≥1,wheneverβ≥β0,whereβ0∈(0.308443,0.308444)istheuniquesolutionoftheequation
引用
收藏
页码:253 / 255
页数:3
相关论文
共 4 条
  • [1] Extensions of Vietoris’s inequalities I. Brown G,Dai Feng,Wang Kunyang. Advances in Mathemat- ics(China) . 2005
  • [2] A CLASS OF POSITIVE TRIGONOMETRIC SUMS
    BROWN, G
    HEWITT, E
    [J]. MATHEMATISCHE ANNALEN, 1984, 268 (01) : 91 - 122
  • [3] Uber das Vorzeichen gewisser trigonometricher Summen , Sitzungsber, Ost. Vietoris L. Acad. Wiss. Math. -Natur. Kl. S.-B. II . 1958
  • [4] A class of positive trigonometric sums. Brown G,Hewitt E. Mathematische Annalen . 1984