深度学习算法在脑电信号解码中的应用

被引:10
作者
韦梦莹
李琳玲
黄淦
唐翡
张治国
机构
[1] 深圳大学医学部生物医学工程学院医学超声关键技术国家地方联合工程实验室广东省医学信息检测与超声成像重点实验室
关键词
深度学习; 神经网络; 脑电; 解码; 脑机接口;
D O I
暂无
中图分类号
R318 [生物医学工程]; TP18 [人工智能理论]; TN911.7 [信号处理];
学科分类号
0831 ; 081104 ; 0812 ; 0835 ; 1405 ; 0711 ; 080401 ; 080402 ;
摘要
近年来深度学习算法得到飞速发展,在生物医学工程领域的应用也越来越广泛。其中,利用深度学习算法从脑电信号(EEG)中解码生理、心理或病理状态也受到越来越多的关注。综述近年来深度学习算法在EEG解码中的应用,介绍常用算法、典型应用场景、重要进展和现存的问题。首先,论述常用于EEG解码的几类深度学习算法的基本原理,包括卷积神经网络、深度信念网络、自编码器和循环神经网络等。然后,讨论深度学习算法的几个典型EEG解码应用场景,包括脑机接口、情绪与认知识别、疾病辅助诊断。结合应用实例,归纳深度学习算法在EEG解码中的常见问题、解决方案、主要进展和研究趋势。最后,总结深度学习应用于EEG信号解码中仍待解决的一些关键问题,如参数复杂度、训练时间以及泛化能力等。
引用
收藏
页码:464 / 472
页数:9
相关论文
共 33 条
[1]  
Optimized Deep Neural Network Architecture for Robust Detection of Epileptic Seizures using EEG Signals[J] . Ramy Hussein,Hamid Palangi,Rabab K. Ward,Z. Jane Wang.Clinical Neurophysiology . 2018
[2]  
A Convolutional Neural Network approach for Classification of Dementia Stages based on 2D-Spectral Representation of EEG recordings[J] . Cosimo Ieracitano,Nadia Mammone,Alessia Bramanti,Amir Hussain,Francesco C. Morabito.Neurocomputing . 2018
[3]  
EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J] . Vernon J Lawhern,Amelia J Solon,Nicholas R Waytowich,Stephen M Gordon,Chou P Hung,Brent J Lance.Journal of Neural Engineering . 2018 (5)
[4]  
A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update[J] . F Lotte,L Bougrain,A Cichocki,M Clerc,M Congedo,A Rakotomamonjy,F Yger.Journal of Neural Engineering . 2018 (3)
[5]  
EEG-based brain–computer interfaces[J] . D.J. McFarland,J.R. Wolpaw.Current Opinion in Biomedical Engineering . 2017
[6]  
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J] . U. Rajendra Acharya,Shu Lih Oh,Yuki Hagiwara,Jen Hong Tan,Hojjat Adeli.Computers in Biology and Medicine . 2017
[7]  
The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing[J] . Teng Ma,Hui Li,Hao Yang,Xulin Lv,Peiyang Li,Tiejun Liu,Dezhong Yao,Peng Xu.Journal of Neuroscience Methods . 2017
[8]  
Single-trial EEG classification of motor imagery using deep convolutional neural networks[J] . Zhichuan Tang,Chao Li,Shouqian Sun.Optik - International Journal for Light and Elect . 2017
[9]  
Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition[J] . Xin Chai,Qisong Wang,Yongping Zhao,Xin Liu,Ou Bai,Yongqiang Li.Computers in Biology and Medicine . 2016
[10]  
A Unique Approach to Epilepsy Classification from EEG Signals Using Dimensionality Reduction and Neural Networks[J] . Harikumar Rajaguru,Sunil Kumar Prabhakar.Circuits and Systems . 2016 (08)