D-CONVERGENCE AND STABILITY OF A CLASS OF LINEAR MULTISTEP METHODS FOR NONLINEAR DDES

被引:0
|
作者
Cheng-jian Zhang
Xiao-xin Liao (Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
D-Convergence; Stability; Multistep methods; Nonlinear DDEs;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
This paper deals with the error behaviour and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation (LMLMs) as applied to the nonlinear delay differential equations (DDEs). It is shown that a LMLM is generally stable with respect to the problem of class D_σγ, and a p-order linear multistep method together with a q-order Lagrangian interpolation leads to a Dconvergent LMLM of order min{p, q + 1}.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 50 条