一类离散型Bellman-Bihari不等式及其应用

被引:3
|
作者
高庆龄
机构
[1] 山东教育学院数理系山东济南
关键词
非线性; 离散型不等式; 渐近性;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
摘要
本文建立了一类新的更为广泛的非线性离散不等式.所得结果改进并推广了文中的有关结果.并利用所得结果考虑了差分方程Δ2u(n)+f(n,u(n),Δu(n))=0解的渐进性质,其中(n,u,ν)∈N×R×R,N=1,2,….
引用
收藏
页码:493 / 499
页数:7
相关论文
共 7 条
  • [1] Asymptotic behavior of solutions of second order nonlineardifference equations. WANG Ji-zhong,MENG Fan-wei,LI Ji-bao. Kodai Mathematical Journal . 1996
  • [2] A note on Gronwall’s inequality. DEO S G,MUROESHAR M G. Bulletin of the London Mathematical Society . 1971
  • [3] A stability test for difference equations. DEMIDOVIC V B. Diferentsial’nye urarneniya . 1969
  • [4] A note on Gronwall-Bellman inequality. PACHPATTE B G. Journal of Mathematical Analysis and Applications . 1973
  • [5] Boundedness of solutions of higher order of a class nonlinear difference equations. MENG Fan-wei. Annals of Differential Equations . 1988
  • [6] Nonoscillation, oscillation and growth of solutions of nonlinear difference equations. SZMANDA B. Journal of Mathematical Analysis and Applications . 1985
  • [7] Discrete inequalities of the Gromvall-Bellman type in n independent variables. YEH CC. Journal of Mathematical Analysis and Applications . 1985