Free Quadratic Bialgebra

被引:0
|
作者
Hao Zhifeng
机构
基金
中国国家自然科学基金;
关键词
Free quadratic bialgebra; Antipode; Cosemisimple; Rational module;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
In this paper, we obtain the following main theorem for a free quadratic bialgebra J:(a) For p≠0, J is a pointed cosemisimple coalgebra. For p=0, J is a hyperalgebra.(b) For p≠0 and q≠0, J has antipode S iff p·q+2=0 and S(x)=x. Forp=0 or q=0, J hasantipode and S(x)=-x.(c) All left J*-modules are rational.Also, we give some applications in homological theory and algebraic K-theory.
引用
收藏
页码:244 / 248
页数:5
相关论文
共 50 条
  • [1] Free Quadratic Bialgebra
    Hao Zhifeng Department of Applied Mathematics South China University of Technology Guangzhou ChinaTong Wenting Department of Mathematics Nanjing University Nanjing China
    Acta Mathematica Sinica(New Series), 1996, 12 (03) : 244 - 248
  • [2] Quasi-bialgebra Structures and Torsion-free Abelian Groups
    Ardizzoni, Alessandro
    Bulacu, Daniel
    Menini, Claudia
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 247 - 265
  • [3] THE SHUFFLE BIALGEBRA
    BENSON, DB
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 298 : 616 - 636
  • [4] A pairing theorem between a braided bialgebra and its dual bialgebra
    Guo, MZ
    Jiang, LN
    Zhao, EXW
    JOURNAL OF ALGEBRA, 2001, 245 (02) : 532 - 551
  • [5] Novikov Poisson bialgebra
    Li, Bei
    Wang, Dingguo
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [6] Free quadratic harness
    Bryc, Wlodzimierz
    Matysiak, Wojciech
    Wesolowski, Jacek
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (03) : 657 - 671
  • [7] On the cobar construction of a bialgebra
    Kadeishvili, T.
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2005, 7 (02) : 109 - 122
  • [8] A pairing theorem between multi-parameter bialgebra and its dual bialgebra
    Maozheng Guo
    Lining Jiang
    Min Qian
    Science in China Series A: Mathematics, 2001, 44 : 867 - 876
  • [9] Separable free quadratic algebras over quadratic integers
    Browkin, J
    Brzezinski, J
    JOURNAL OF NUMBER THEORY, 2004, 109 (02) : 379 - 389
  • [10] On graded bialgebra deformations
    Du, Yu
    Chen, Xiaowu
    Ye, Yu
    ALGEBRA COLLOQUIUM, 2007, 14 (02) : 301 - 312