Stancu型q-Bernstein-Durrmeyer算子的逼近性质

被引:2
|
作者
任美英
机构
[1] 武夷学院数学与计算机学院
关键词
Stancu型q-Bernstein-Durrmeyer算子; q-整数; 连续模; 收敛性;
D O I
10.14155/j.cnki.35-1293/g4.2019.09.001
中图分类号
O174.41 [逼近论];
学科分类号
摘要
基于q-整数概念,引进一类Stancu型q-Bernstein-Durrmeyer算子,研究了该算子列的一些逼近性质。得到了算子列的一个Korovkin型收敛定理,并给出了算子列收敛速度的一些估计。
引用
收藏
页码:1 / 4
页数:4
相关论文
共 12 条
  • [1] Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein–Stancu–Kantorovich operators[J] . Behar Baxhaku,Purshottam Narain Agrawal. &nbspApplied Mathematics and Computation . 2017
  • [2] Statistical approximation by Kantorovich-type discrete q -Beta operators[J] . Vishnu Narayan Mishra,Kejal Khatri,Lakshmi Narayan Mishra. &nbspAdvances in Difference Equations . 2013 (1)
  • [3] q -Szász–Mirakyan–Kantorovich type operators preserving some test functions[J] . &nbspApplied Mathematics Letters . 2011 (9)
  • [4] Bernstein polynomials based on the $q$-integers. George M. Phillips. Ann. Numer. Math . 1997
  • [5] Basic hypergeometric series. Gasper,G.,Rahman,M. Encyclopedia of Mathematics and its Applications . 1990
  • [6] On q-Bernstein polynomials and related positive linear operators. Videnskii V S. Problems of Modern Mathematics and Mathematical Education . 2004
  • [7] Approximation properties of bivariate extension of q-bernstein-schurer-kantorovich operators. ACU A M,MURARU C V. Results in Mathematics . 2015
  • [8] Quantum Calculus. KAC V G,CHEUNG P. . 2002
  • [9] Constructive Approximation. DEVORE R A,LORENTZ G G. . 1993
  • [10] On certain q-Durrmeyer type operators
    Gupta, Vijay
    Finta, Zoltan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) : 415 - 420