非自治FitzHugh-Nagumo系统拉回吸引子的H2×H0~1有界性

被引:0
|
作者
伍亚军
李晓军
机构
[1] 河海大学理学院
关键词
非自治系统; 拉回吸引子; 有界性;
D O I
10.16205/j.cnki.cama.2017.0008
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
研究带奇异扰动非自治FitzHugh-Nagumo系统拉回吸引子的H3×H0~1有界性.为此,首先建立关于过程有界不变集的H2×H0~1有界性,从而得到原系统拉回吸引子的有界性结果.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 11 条
  • [1] 无界域上带奇异扰动的非自治FitzHugh-Nagumo系统拉回吸引子的存在性
    伍亚军
    李晓军
    [J]. 江西师范大学学报(自然科学版), 2014, 38 (03) : 244 - 249
  • [2] A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases[J] . N.T.P. Le,H. Xiao,R.S. Myong.Journal of Computational Physics . 2014
  • [3] High-order Galerkin convergence and boundary characteristics of the 3-D Navier–Stokes equations on intervals of regularity[J] . Joel Avrin.Journal of Differential Equations . 2013
  • [4] Pullback attractors in V for non-autonomous 2D-Navier–Stokes equations and their tempered behaviour[J] . Julia García-Luengo,Pedro Marín-Rubio,José Real.Journal of Differential Equations . 2012 (8)
  • [5] H 2 -boundedness of the pullback attractors for non-autonomous 2D Navier–Stokes equations in bounded domains[J] . Julia García-Luengo,Pedro Marín-Rubio,José Real.Nonlinear Analysis . 2011 (14)
  • [6] Pullback attractors of non-autonomous reaction–diffusion equations in H 0 1[J] . Haitao Song.Journal of Differential Equations . 2010 (10)
  • [7] H 2 -boundedness of the pullback attractor for a non-autonomous reaction–diffusion equation[J] . M. Anguiano,T. Caraballo,J. Real.Nonlinear Analysis . 2009 (2)
  • [8] Attractors in L 2 ( R N ) for a class of reaction–diffusion equations[J] . Yanhong Zhang,Chengkui Zhong,Suyun Wang.Nonlinear Analysis . 2009 (5)
  • [9] Pullback attractors for the non-autonomous FitzHugh–Nagumo system on unbounded domains[J] . Bixiang Wang.Nonlinear Analysis . 2008 (11)
  • [10] Pullback attractors for asymptotically compact non-autonomous dynamical systems[J] . Nonlinear Analysis . 2005 (3)