The Growth of Solutions of Higher Order Differential Equations with Coefficients Having the Same Order

被引:0
|
作者
Yanyan ZHAN [1 ]
Lipeng XIAO [1 ]
机构
[1] College of Mathematics and Information Science,Jiangxi Normal University
基金
中国国家自然科学基金;
关键词
order of growth; hyper-order; exponent of convergence of zero sequence; differential equation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we consider the growth of solutions of some homogeneous and nonhomogeneous higher order differential equations.It is proved that under some conditions for entire functions F,A;and polynomials P;(z),Q;(z)(j=0,1,…,k-1;i=1,2)with degree n≥1,the equation f;+(A;(z)e;p;(z))+A;(z)e;Q;)/;+…+(A;(z)e;+A;(z)e;)f=F,where k≥2,satisfies the properties:When F ≡0,all the non-zero solutions are of infinite order;when F=0,there exists at most one exceptional solution fo with finite order,and all other solutions satisfy λ(f)=λ(f)=σ(f)=∞.
引用
收藏
页码:387 / 399
页数:13
相关论文
共 50 条