Comments on "Non-existence of Shilnikov chaos in continuous-time systems"

被引:0
|
作者
A.ALGABA [1 ]
F.FERNANDEZ-SANCHEZ [2 ]
M.MERINO [1 ]
A.J.RODRIGUEZ-LUIS [2 ]
机构
[1] Departamento de Matematicas,Centro de Investigacion de Fisica Teorica y Matematica FIMAT,University of Huelva
[2] Departamento de Matematica Aplicada II,E.S.Ingenieros,University of Sevilla, Camino de los Descubrimientos s/n
关键词
homoclinic chaos; heteroclinic chaos; non-existence of Shilnikov chaos;
D O I
暂无
中图分类号
O322 [非线性振动];
学科分类号
080101 ;
摘要
A paper, "Non-existence of Shilnikov chaos in continuous-time systems" was published in the journal Applied Mathematics and Mechanics(English Edition).The authors gave sufficient conditions for the non-existence of homoclinic and heteroclinic orbits in an nth-order autonomous system.Unfortunately,we show in this comment that the proof presented is erroneous and the result is invalid.We also provide two counterexamples of the wrong criterion stated by the authors.
引用
收藏
页码:1175 / 1176
页数:2
相关论文
共 50 条
  • [1] Comments on "Non-existence of Shilnikov chaos in continuous-time systems"
    Algaba, A.
    Fernandez-Sanchez, F.
    Merino, M.
    Rodriguez-Luis, A. J.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (09) : 1175 - 1176
  • [2] Comments on “Non-existence of Shilnikov chaos in continuous-time systems”
    管福丽
    雷佑铭
    赵云平
    李毅伟
    AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (03) : 403 - 404
  • [3] Comments on “Non-existence of Shilnikov chaos in continuous-time systems”
    A. Algaba
    F. Fernández-Sánchez
    M. Merino
    A. J. Rodríguez-Luis
    Applied Mathematics and Mechanics, 2013, 34 : 1175 - 1176
  • [4] Non-existence of Shilnikov chaos in continuous-time systems
    Elhadj, Z.
    Sprott, J. C.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2012, 33 (03) : 371 - 374
  • [5] Non-existence of Shilnikov chaos in continuous-time systems
    Z. Elhadj
    J. C. Sprott
    Applied Mathematics and Mechanics, 2012, 33 : 371 - 374
  • [6] Non-existence of Shilnikov chaos in continuous-time systems
    Z.ELHADJ
    J.C.SPROTT
    Applied Mathematics and Mechanics(English Edition), 2012, 33 (03) : 371 - 374
  • [7] Anticontrol of chaos for continuous-time systems
    Chen, GR
    Yang, L
    Liu, ZR
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (06) : 1333 - 1335
  • [8] Non-existence of Shilnikov chaos in a simple five-term chaotic system with exponential quadratic term
    Wei, Zhouchao
    Wang, Junxia
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (9-10): : 926 - 930
  • [9] A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems
    Zhang, Xu
    Chen, Guanrong
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (01) : 71 - 93
  • [10] A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems
    Xu Zhang
    Guanrong Chen
    Journal of Dynamical and Control Systems, 2023, 29 : 71 - 93