DERIVED SEQUENCES AND THE FACTOR SPECTRUM OF THE PERIOD-DOUBLING SEQUENCE

被引:0
|
作者
黄煜可 [1 ]
文志英 [2 ]
机构
[1] School of Science, Beijing University of Posts and Telecommunications
[2] Department of Mathematical Sciences, Tsinghua University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
Factor properties and their structures are important themes in combinatorics on words. Let D be the infinite one-sided sequence over the alphabet {a, b} generated by the period-doubling substitution σ(a) = ab and σ(b) = aa. In this paper, we determine the derived sequence D(D) for any factor ω■D, and study some factor spectra using the structures of derived sequences. We also prove the reflexivity property of derived sequences.
引用
收藏
页码:1921 / 1937
页数:17
相关论文
共 50 条
  • [1] DERIVED SEQUENCES AND THE FACTOR SPECTRUM OF THE PERIOD-DOUBLING SEQUENCE
    Huang, Yuke
    Wen, Zhiying
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 1921 - 1937
  • [2] Derived Sequences and the Factor Spectrum of the Period-Doubling Sequence
    Yuke Huang
    Zhiying Wen
    Acta Mathematica Scientia, 2021, 41 : 1921 - 1937
  • [3] The Spectrum of Period-Doubling Hamiltonian
    Liu, Qinghui
    Qu, Yanhui
    Yao, Xiao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 394 (03) : 1039 - 1100
  • [4] The Spectrum of Period-Doubling Hamiltonian
    Qinghui Liu
    Yanhui Qu
    Xiao Yao
    Communications in Mathematical Physics, 2022, 394 : 1039 - 1100
  • [5] Local symmetries in the period-doubling sequence
    Damanik, D
    DISCRETE APPLIED MATHEMATICS, 2000, 100 (1-2) : 115 - 121
  • [6] The Formal Inverse of the Period-Doubling Sequence
    Rampersad, Narad
    Stipulanti, Manon
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (09)
  • [7] Hankel matrices for the period-doubling sequence
    Fokkink, Robbert J.
    Kraaikamp, Cor
    Shallit, Jeffrey
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (01): : 108 - 119
  • [8] SPECTRAL BROADENING OF PERIOD-DOUBLING BIFURCATION SEQUENCES
    FARMER, JD
    PHYSICAL REVIEW LETTERS, 1981, 47 (03) : 179 - 182
  • [9] Recurrence Quantification Analysis of the Period-Doubling Sequence
    Spitalsky, Vladimir
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [10] Infinite products involving the period-doubling sequence
    John M. Campbell
    Monatshefte für Mathematik, 2024, 203 : 765 - 778