Neuro-fuzzy system modeling based on automatic fuzzy clustering

被引:0
|
作者
Yuangang TANG
机构
关键词
Neuro-fuzzy system; Automatic fuzz y C-means; Gradient descent; Back propagation; Recursive least square estimation; Two-link manipulator;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A neuro-fuzzy system model b as ed on automatic fuzzy clustering is proposed.A h ybrid model identification algorithm is also developed to decide the model structure and model parameter s.The algorithm mainly includes three parts:1) Autom atic fuzzy C-means (AFCM),which is applied to ge nerate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which t he complexity of system design is reducesd greatly a t the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which i s employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy va lues according to the back pro pagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to valid ate the feasibility of the method.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [1] Neuro-fuzzy system modeling based on automatic fuzzy clustering
    Yuangang Tang
    Fuchun Sun
    Zengqi Sun
    Journal of Control Theory and Applications, 2005, 3 (2): : 121 - 130
  • [2] Neuro-fuzzy system modeling with density-based clustering
    Pan, Weimin
    He, Jun
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (11): : 1986 - 1992
  • [3] SEQUENTIAL FUZZY CLUSTERING BASED ON NEURO-FUZZY APPROACH
    Bodyanskiy, Ye, V
    Deineko, A. O.
    Kutsenko, Ya., V
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2016, (03) : 30 - 38
  • [4] Tuning fuzzy rules based on fuzzy clustering and neuro-fuzzy methods
    Shi, Y
    Mizumoto, M
    Shi, P
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 388 - 391
  • [5] Automatic Classification of Antepartum Cardiotocography Using Fuzzy Clustering and Adaptive Neuro-Fuzzy Inference System
    Fei, Yue
    Huang, Xiaoqian
    Chen, Qinqun
    Chen, Jiamin
    Li, Li
    Hong, Jiaming
    Hao, Zhifeng
    Wei, Hang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1938 - 1942
  • [6] A DENCLUE Based Approach to Neuro-Fuzzy System Modeling
    He, Jun
    Pan, Weimin
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 4, 2010, : 42 - 46
  • [7] Neuro-fuzzy system for clustering of video database
    Manori, M
    Maheshwari, M
    Belawat, K
    Jain, S
    Chande, PK
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 965 - 970
  • [8] Neuro-Fuzzy System Based on Fuzzy Truth Value
    Sinuk, Vasily Grigorievich
    Kulabukhov, Sergey Vladimirovich
    ARTIFICIAL INTELLIGENCE (RCAI 2018), 2018, 934 : 91 - 101
  • [9] Neuro-fuzzy modeling for dynamic system identification
    Jang, JSR
    SOFT COMPUTING IN INTELLIGENT SYSTEMS AND INFORMATION PROCESSING, 1996, : 320 - 325
  • [10] An adaptive neuro-fuzzy approach for system modeling
    Ouyang, CS
    Lee, WJ
    Lee, SJ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1875 - 1880