云数据中心基于贪心算法的虚拟机迁移策略

被引:10
作者
刘开南
机构
[1] 三亚学院信息与智能工程学院
基金
国家重点研发计划; 海南省自然科学基金;
关键词
低能量消耗; 服务等级协议违规; 虚拟机迁移; 云数据中心; 贪心算法;
D O I
暂无
中图分类号
TP302 [设计与性能分析]; TP308 [机房];
学科分类号
081201 ; 0812 ;
摘要
为了节省云数据中心的能量消耗,提出了几种基于贪心算法的虚拟机(VM)迁移策略。这些策略将虚拟机迁移过程划分为物理主机状态检测、虚拟机选择和虚拟机放置三个步骤,并分别在虚拟机选择和虚拟机放置步骤中采用贪心算法予以优化。提出的三种迁移策略分别为:最小主机使用效率选择且最大主机使用效率放置算法MinMaxHostUtilization、最大主机能量使用选择且最小主机能量使用放置算法MaxMinHostPowerUsage、最小主机计算能力选择且最大主机计算能力放置算法MinMaxHostMIPS。针对物理主机处理器使用效率、物理主机能量消耗、物理主机处理器计算能力等指标设置最高或者最低的阈值,参考贪心算法的原理,在指标上超过或者低于这些阈值范围的虚拟机都将进行迁移。利用CloudSim作为云数据中心仿真环境的测试结果表明,基于贪心算法的迁移策略与CloudSim中已存在的静态阈值迁移策略和绝对中位差迁移策略比较起来,总体能量消耗少15%,虚拟机迁移次数少60%,平均SLA违规率低5%。
引用
收藏
页码:3333 / 3338
页数:6
相关论文
共 26 条
[1]  
Energy-efficient application assignment in profile-based data center management through a Repairing Genetic Algorithm[J] . Meera Vasudevan,Yu-Chu Tian,Maolin Tang,Erhan Kozan,Xueying Zhang. &nbspApplied Soft Computing . 2018
[2]   Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers [J].
Beloglazov, Anton ;
Buyya, Rajkumar .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (13) :1397-1420
[3]  
Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing[J] . Anton Beloglazov,Jemal Abawajy,Rajkumar Buyya. &nbspFuture Generation Computer Systems . 2011 (5)
[4]  
CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J] . Rodrigo N.Calheiros,RajivRanjan,AntonBeloglazov,César A. F.De Rose,RajkumarBuyya. &nbspSoftw: Pract. Exper. . 2010 (1)
[5]  
Joint Optimization of Operational Cost and Performance Interference in Cloud Data Centers. Jin X,Zhang F,Wang L,et al. IEEE Transactions on Cloud Computing . 2017
[6]  
Joint Optimization of Radio and Virtual Machine Resources with Uncertain User Demands in Mobile Cloud Computing. LI Y,LIU J,CAO B.et al. IEEE Transactions on Multimedia . 2018
[7]  
A dynamic optimization algorithm for task schedulingin cloud environment. Choudhary M,Peddoju S K. International Journal of Engineering Research andApplications . 2012
[8]  
A power efficient genetic algorithm for resource allocation in cloud computing data centers. PORTALURI G,GIORDANO S,KLIAZOVICH D,et al. International Conference on Cloud NETWORKING . 2014
[9]  
Security aware and energy-efficient virtual machine consolidation in cloud computing systems. AHAMED F,SHAHRESTANI S,JAVADI B. Trustcom . 2016
[10]  
Energy Conscious Dynamic Provisioning of VirtualMachines Using Adaptive Migration Thresholds in Cloud Data Center. MAURYA K,SINHA R. International Journal of Computer Science and Mobile Computing . 2013