基于深度学习的t-f MRI脑状态解码

被引:0
|
作者
付佳俊
卢梅丽
曹一凡
郭兆桦
高资成
机构
[1] 天津职业技术师范大学信息技术工程学院
关键词
脑状态解码; 3D卷积神经网络(3D-CNN); 功能磁共振成像; 可视化; 梯度加权类激活映射; 导向梯度加权类激活映射;
D O I
10.19573/j.issn2095-0926.202204009
中图分类号
TP18 [人工智能理论]; R318 [生物医学工程];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 0831 ;
摘要
针对传统方法在解码大脑状态中由特征提取带来的可重复性差和耗时问题,采用基于3D卷积神经网络(3D-CNN)模型对任务态功能磁共振成像(t-fMRI)进行分类,从不同数据粒度分别采用梯度加权类激活映射(GradCAM)算法和导向梯度加权类激活映射(Guided Grad-CAM)算法探索分类结果与大脑不同脑区的功能相关性。采用4种不同t-f MRI数据验证算法的有效性,结果显示:3D-CNN分类模型准确度达97.8%,特征可视化能够准确映射到分类结果对应的功能脑区,且可有效解码大脑任务状态。
引用
收藏
页码:45 / 50
页数:6
相关论文
共 14 条
  • [1] 面向对抗样本的深度神经网络可解释性分析
    董胤蓬
    苏航
    朱军
    [J]. 自动化学报, 2022, 48 (01) : 75 - 86
  • [2] 机器学习模型可解释性方法、应用与安全研究综述
    纪守领
    李进锋
    杜天宇
    李博
    [J]. 计算机研究与发展, 2019, 56 (10) : 2071 - 2096
  • [3] Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[J] . Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra.International Journal of Computer Vision . 2020 (2)
  • [4] Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction[J] . Meenakshi Khosla,Keith Jamison,Amy Kuceyeski,Mert R. Sabuncu.NeuroImage . 2019
  • [5] A Survey of Methods for Explaining Black Box Models
    Guidotti, Riccardo
    Monreale, Anna
    Ruggieri, Salvatore
    Turin, Franco
    Giannotti, Fosca
    Pedreschi, Dino
    [J]. ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [6] Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks
    Zhao, Yu
    Dong, Qinglin
    Zhang, Shu
    Zhang, Wei
    Chen, Hanbo
    Jiang, Xi
    Guo, Lei
    Hu, Xintao
    Han, Junwei
    Liu, Tianming
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) : 1975 - 1984
  • [7] Transferring and generalizing deep-learning-based neural encoding models across subjects[J] . Haiguang Wen,Junxing Shi,Wei Chen,Zhongming Liu.NeuroImage . 2018
  • [8] Generative adversarial networks for reconstructing natural images from brain activity[J] . K. Seeliger,U. Gü?lü,L. Ambrogioni,Y. Gü?lütürk,M.A.J. van Gerven.NeuroImage . 2018
  • [9] Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks[J] . Dvornek Nicha C,Ventola Pamela,Pelphrey Kevin A,Duncan James S.Machine learning in medical imaging. MLMI (Workshop) . 2017
  • [10] Seeing it all: Convolutional network layers map the function of the human visual system[J] . Michael Eickenberg,Alexandre Gramfort,Ga?l Varoquaux,Bertrand Thirion.NeuroImage . 2017