Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs

被引:0
|
作者
张严波 [1 ,2 ]
杜彦东 [1 ]
熊莹 [1 ]
杨香 [1 ]
韩伟华 [1 ]
杨富华 [1 ,3 ]
机构
[1] Engineering Research Center for Semiconductor Integration Technology,Institute of Semiconductors,Chinese Academy of Sciences
[2] Department of Electronic Engineering,Tsinghua University
[3] State Key Laboratory for Superlattices and Microstructures
基金
国家高技术研究发展计划(863计划);
关键词
accumulation mode; inversion mode; wrap gate; Fin-FET; volume accumulation;
D O I
暂无
中图分类号
TN386 [场效应器件];
学科分类号
0805 ; 080501 ; 080502 ; 080903 ;
摘要
Comparisons are performed to study the drive current of accumulation-mode(AM) p-channel wrap-gated Fin-FETs.The drive current of the AM p-channel FET is 15%-26%larger than that of the inversion-mode (IM) p-channel FET with the same wrap-gated fin channel,because of the body current component in the AM FET, which becomes less dominative as the gate overdrive becomes larger.The drive currents of the AM p-channel wrap-gated Fin-FETs are 50%larger than those of the AM p-channel planar FETs,which arises from effective conducting surface broadening and volume accumulation in the AM wrap-gated Fin-FETs.The effective conducting surface broadening is due to wrap-gate-induced multi-surface conduction,while the volume accumulation,namely the majority carrier concentration anywhere in the fin cross section exceeding the fin doping density,is due to the coupling of electric fields from different parts of the wrap gate.Moreover,for AM p-channel wrap-gated Fin-FETs, the current in channel along <110> is larger than that in channel along <100>,which arises from the surface mobility difference due to different transport directions and surface orientations.That is more obvious as the gate overdrive becomes larger,when the surface current component plays a more dominative role in the total current.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 22 条
  • [1] Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs
    Zhang Yanbo
    Du Yandong
    Xiong Ying
    Yang Xiang
    Han Weihua
    Yang Fuhua
    JOURNAL OF SEMICONDUCTORS, 2011, 32 (09)
  • [2] Low-Temperature Performance of Accumulation-Mode p-Channel Wrap-Gated FinFETs
    Zhang, Yanbo
    Du, Yandong
    Chen, Yankun
    Li, Xiaoming
    Yang, Xiang
    Han, Weihua
    Yang, Fuhua
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 804 - 807
  • [3] SUBTHRESHOLD SLOPE OF LONG-CHANNEL, ACCUMULATION-MODE P-CHANNEL SOI MOSFETS
    COLINGE, JP
    FLANDRE, D
    VANDEWIELE, F
    SOLID-STATE ELECTRONICS, 1994, 37 (02) : 289 - 294
  • [4] CONDUCTION MECHANISMS IN THIN-FILM ACCUMULATION-MODE SOI P-CHANNEL MOSFETS
    COLINGE, JP
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (03) : 718 - 723
  • [5] Subthreshold Performance of Double-gate Accumulation-mode P-channel SOI MOSFET
    Zhang Zhengfan
    Li Zhaoji
    Tan Kaizhou
    Zhang Jiabin
    Li Kaicheng
    2007 5TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2007, : 647 - +
  • [6] SHORT CHANNEL-EFFECT IN THIN-FILM ACCUMULATION-MODE P-CHANNEL SOI MOSFETS
    SMEYS, P
    CLERIX, A
    COLINGE, JP
    ELECTRONICS LETTERS, 1991, 27 (11) : 970 - 971
  • [7] ANOMALOUS SUBTHRESHOLD SLOPES IN THIN-FILM ACCUMULATION-MODE SOI P-CHANNEL MOSFETS
    TOKUNAGA, K
    STURM, JC
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1992, 39 (10) : 2413 - 2415
  • [8] TRANSIENT EFFECTS IN ACCUMULATION-MODE P-CHANNEL SOI MOSFETS OPERATING AT 77-K
    MARTINO, JA
    ROTONDARO, ALP
    SIMOEN, E
    MAGNUSSON, U
    CLAEYS, C
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (04) : 519 - 523
  • [9] AN ANALYTICAL BACK GATE BIAS DEPENDENT SUBTHRESHOLD SWING MODEL FOR ACCUMULATION-MODE P-CHANNEL SOI MOSFETS
    NIU, GF
    RUAN, G
    SOLID-STATE ELECTRONICS, 1995, 38 (10) : 1805 - 1810
  • [10] EVIDENCE OF DIFFERENT CONDUCTION MECHANISMS IN ACCUMULATION-MODE P-CHANNEL SOI MOSFETS AT ROOM AND LIQUID-HELIUM TEMPERATURES
    ROTONDARO, ALP
    MAGNUSSON, UK
    CLAEYS, C
    FLANDRE, D
    TERAO, A
    COLINGE, JP
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (04) : 727 - 732