Role of sea ice in air-sea exchange and its relation to sea fog

被引:4
|
作者
解思梅
包澄澜
姜德中
机构
基金
美国国家科学基金会;
关键词
Arctic sea ice; ice-air-sea interaction; sea-air exchange; Arctic sea fog;
D O I
暂无
中图分类号
P731.15 [海冰];
学科分类号
摘要
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 50 条
  • [1] The role of the air-sea temperature difference in air-sea exchange
    Phillips, LF
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (17) : L173011 - 4
  • [2] The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean
    DiMento, Brian P.
    Mason, Robert P.
    Brooks, Steven
    Moore, Chris
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2019, 144 : 28 - 38
  • [3] SEA ICE INFLUENCE ON AIR-SEA INTERACTION
    GOSINK, TA
    KELLEY, JJ
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 283 - 283
  • [4] Modeling the role of sea spray on air-sea heat and moisture exchange
    Edson, JB
    Andreas, EL
    12TH SYMPOSIUM ON BOUNDARY LAYERS AND TURBULENCE, 1997, : 490 - 491
  • [5] Estimates of air-sea exchange of mercury in the Baltic Sea
    Wängberg, I
    Schmolke, S
    Schager, P
    Munthe, J
    Ebinghaus, R
    Iverfeldt, Å
    ATMOSPHERIC ENVIRONMENT, 2001, 35 (32) : 5477 - 5484
  • [6] RADON PROFILES IN SEA - A MEASURE OF AIR-SEA EXCHANGE
    SCHINK, DR
    GUINASSO, NL
    CHARNELL, RL
    SIGALOVE, JJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1970, NS17 (01) : 184 - &
  • [7] Impact of Sea Ice Melting on Summer Air-Sea CO2 Exchange in the East Siberian Sea
    Mo, Ahra
    Yang, Eun Jin
    Kang, Sung-Ho
    Kim, Dongseon
    Lee, Kitack
    Ko, Young Ho
    Kim, Kitae
    Kim, Tae-Wook
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [8] Investigations of Air-Sea Gas Exchange in the CoOP Coastal Air-Sea Chemical Exchange Project
    Edson, James B.
    DeGrandpre, Michael D.
    Frew, Nelson
    McGillis, Wade R.
    OCEANOGRAPHY, 2008, 21 (04) : 34 - 45
  • [9] Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans
    Rysgaard, Soren
    Bendtsen, Jorgen
    Delille, Bruno
    Dieckmann, Gerhard S.
    Glud, Ronnie N.
    Kennedy, Hilary
    Mortensen, John
    Papadimitriou, Stathys
    Thomas, David N.
    Tison, Jean-Louis
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (05): : 823 - 830
  • [10] The role of bubbles during air-sea gas exchange
    Emerson, Steven
    Bushinsky, Seth
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (06) : 4360 - 4376