基于卷积神经网络的不良地质体识别与分类

被引:16
|
作者
陈冠宇
安凯
李向
机构
[1] 中国地质大学(武汉)计算机学院
关键词
遥感影像; 不良地质体; 深度学习; 分类方法; 神经网络;
D O I
暂无
中图分类号
P627 [遥感勘探];
学科分类号
1404 ;
摘要
西部大开发战略实施以来,西部地区,尤其是新疆等地,修建高速公路成为近年来的首要任务。但是,西部海拔较高,地理环境恶劣,像沙害、盐渍土、冻土和荒漠等特殊地质体广泛分布。以新疆尉犁县罗布人村寨为研究区域,针对当地典型的不良地质体遥感影像特征,重点探讨了深度学习算法中的卷积神经网络方法在不良地质体识别与分类中的应用,实验结果对比分析表明:与K-均值分类器、SVM分类器和贝叶斯分类器对比分类精度,当样本数量较少时卷积神经网络方法优势不明显,当训练样本足够大时,其分类精度达到90%左右,优势非常明显。
引用
收藏
页码:205 / 211
页数:7
相关论文
共 8 条