基于EREF的PSO-AdaBoost训练算法

被引:4
作者
李睿
张九蕊
毛莉
机构
[1] 兰州理工大学计算机与通信学院
关键词
人脸检测; 粒子群优化; AdaBoost算法; 相对熵; 训练算法;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
针对基于PSO的AdaBoost算法(PSO-AdaBoost)的不足,分析了传统目标函数不能适应多个弱分类器拥有相同最小错误率时弱分类器的选择问题,提出了解决这一问题的有效方法。新方法使用特征值和阈值的绝对值差衡量错分样本的错误程度,结合相对熵理论形成PSO算法的适应度函数,使其根据错分样本的错误程度挑选最佳弱分类器。实验结果表明,所提算法具有较高的检测率和较小的泛化错误。
引用
收藏
页码:127 / 129
页数:3
相关论文
共 8 条
[1]  
Face detection using Haar-like features cascade and convo-lutional neural network. PALIY I. Proc of International Conference onModern Problems of Radio Engineering,Telecommunications andComputer Science . 2008
[2]  
Particle swarm optimization. Kennedy J,Eberhart RC. Proceedings of IEEE International Conference on Neural Networks . 1995
[3]  
Detecting faces in images:A survey. M H Yang,D Kriegman,N Ahuja. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
[4]  
A decision-theoretic generalization of on-line learning and an application to boosting. Freund Y,Schapire RE. Journal of Computer and System Sciences . 1997
[5]  
Particle Swarm Optimization based Adaboost for face detection. Mengjie Zhang,Johnston, M. Evolutionary Computation,2009.CEC‘09. IEEE Congress on . 2009
[6]   一种Adaboost快速训练算法 [J].
钱志明 ;
徐丹 .
计算机工程, 2009, 35 (20) :187-188+191
[7]  
Head gestures for perceptual interfaces: The role of context in improving recognition[J] . Louis-Philippe Morency,Candace Sidner,Christopher Lee,Trevor Darrell. &nbspArtificial Intelligence . 2007 (8)
[8]  
Head gestures forperceptual interfaces:the role of context in improving recognition. MORENCYA L P,SIDNERB C,LEEC C,et al. Artificial Intelligence . 2007