基于中山大学珠海校区气象观测站日平均风速、日平均气温、日平均空气湿度、日平均水汽压、日平均总辐射量、日平均地表温度、日平均降雨量、日平均蒸发量以及日平均10 cm、20 cm、30 cm土层土壤的含水量,利用支持向量机方法建立气象因子与土壤湿度统计关系,并以此为基础建立土壤湿度模拟与预测模型。结果表明,土壤湿度对气象因子有一定滞后相关性,不同土层土壤湿度对气象因子的滞后相关性不同。研究发现考虑滞后相关性的预测模型在精度上要高于不考虑滞后相关性的预测模型。此外,利用气象因子对地下10 cm的土壤湿度模拟与预测精度较高,而对地下20 cm、30 cm的土壤湿度模拟精度较低。利用地下10 cm与20 cm、20 cm与30 cm的土壤湿度相关性大的特点,可以考虑利用支持向量机方法以10 cm土壤湿度模拟与预测20 cm的土壤湿度,以20 cm的土壤湿度模拟与预测30 cm的土壤湿度,分析结果表明模拟精度较高。