Boron removal from metallurgical grade silicon by slag refining based on GA-BP neural network

被引:1
|
作者
Shi-Lai Yuan [1 ]
Hui-Min Lu [1 ]
Pan-Pan Wang [1 ]
Chen-Guang Tian [1 ]
Zhi-Jiang Gao [1 ]
机构
[1] School of Materials Science and Engineering,Beijing University of Aeronautics and Astronautics
基金
国家高技术研究发展计划(863计划);
关键词
D O I
暂无
中图分类号
TP183 [人工神经网络与计算]; TQ127.2 [硅及其无机化合物];
学科分类号
081104 ; 0812 ; 0817 ; 0835 ; 1405 ;
摘要
In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO-CaO-NaAlF-CaSiOslag system at 1,550℃,and back propagation(BP) neural network was used to model the relationship between slag compositions and boron content in SiO-CaO-NaAlF-CaSiOslag system.The BP neural network predicted error is below 2.38 %.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or NaAlFto CaSiO-based slag could contribute to the boron removal,and the addition of NaAlFhas a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiOresults in the ineffective removal with the addition of SiO.The increase of oxygen potential(pO)in the CaO-NaAlF-CaSiOslag system by varying the SiOproportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000 × 10to0.4366×10after slag melting using 23.12 % SiO-10.44 % CaO-16.83 % NaAlF-49.61 % CaSiOslag system,close to the experimental boron content in silicon which is below 0.5×10.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [1] Boron removal from metallurgical grade silicon by slag refining based on GA-BP neural network
    Shi-Lai Yuan
    Hui-Min Lu
    Pan-Pan Wang
    Chen-Guang Tian
    Zhi-Jiang Gao
    Rare Metals, 2021, 40 : 237 - 242
  • [2] Boron removal from metallurgical grade silicon by slag refining based on GA-BP neural network
    Yuan, Shi-Lai
    Lu, Hui-Min
    Wang, Pan-Pan
    Tian, Chen-Guang
    Gao, Zhi-Jiang
    RARE METALS, 2021, 40 (01) : 237 - 242
  • [3] Enhanced boron removal from metallurgical grade silicon by the slag refining method with the addition of tin
    Li, Jiayan
    Cao, Panpan
    Ni, Ping
    Li, Yaqiong
    Tan, Yi
    SEPARATION SCIENCE AND TECHNOLOGY, 2016, 51 (09) : 1598 - 1603
  • [4] Boron removal from metallurgical grade silicon by oxidizing refining
    Wu Ji-jun
    Ma Wen-hui
    Yang Bin
    Dai Yong-nian
    Morita, K.
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (02) : 463 - 467
  • [5] Boron removal from metallurgical grade silicon by oxidizing refining
    伍继君
    马文会
    杨斌
    戴永年
    K. MORITA
    TransactionsofNonferrousMetalsSocietyofChina, 2009, 19 (02) : 463 - 467
  • [6] Boron Removal from Metallurgical-grade Silicon by Slag Refining with Yttria-Silica System
    Lu, C. H.
    Fang, M.
    Huang, L. Q.
    Lai, H. X.
    Chen, J.
    Chen, Y. Q.
    Li, J. T.
    Ma, W. H.
    Sheng, Z. L.
    Luo, X. T.
    METALLURGY TECHNOLOGY AND MATERIALS II, 2013, 813 : 497 - +
  • [7] Boron removal from metallurgical-grade silicon by CaO-SiO2 slag refining
    Wei, Kui-Xian
    Lu, Hai-Fei
    Ma, Wen-Hui
    Li, Yan-Long
    Ding, Zhao
    Wu, Ji-Jun
    Dai, Yong-Nian
    RARE METALS, 2015, 34 (07) : 522 - 526
  • [8] Boron removal from metallurgical-grade silicon by CaO–SiO2 slag refining
    Kui-Xian Wei
    Hai-Fei Lu
    Wen-Hui Ma
    Yan-Long Li
    Zhao Ding
    Ji-Jun Wu
    Yong-Nian Dai
    RareMetals, 2015, 34 (07) : 522 - 526
  • [9] Enhancement of boron removal from metallurgical-grade silicon by titanium addition during slag refining
    Li, Yaqiong
    Zhang, Lifeng
    Liu, Ligang
    METALLURGICAL RESEARCH & TECHNOLOGY, 2021, 118 (06)
  • [10] Boron removal from metallurgical-grade silicon by CaO–SiO2 slag refining
    Kui-Xian Wei
    Hai-Fei Lu
    Wen-Hui Ma
    Yan-Long Li
    Zhao Ding
    Ji-Jun Wu
    Yong-Nian Dai
    Rare Metals, 2015, 34 : 522 - 526