Polycyclic Aromatic Hydrocarbons in Emissions of the Internal Combustion Spark-Ignition Engine

被引:0
|
作者
M. S. Assad [1 ]
V. V. Pisarev [1 ]
A. N. Oznobishin [1 ]
机构
[1] National Academy of Sciences of Belarus,A. V. Luikov Heat and Mass Transfer Institute
关键词
polycyclic aromatic hydrocarbons; carcinogenicity; internal combustion engine; gasoline; octane number;
D O I
10.1007/s10891-025-03110-5
中图分类号
学科分类号
摘要
A quantitative analysis of the concentrations of 16 compounds of the class of polycyclic aromatic hydrocarbons in the combustion products emitted into the atmosphere by an internal combustion piston engine was performed using the chromatograph mass spectroscopy method. The most common commercial gasolines AI-92, AI-95, and AI-98 were used as fuel. The effect of the octane number of gasoline on the release of polycyclic aromatic hydrocarbons was studied during engine operation in idle, high speed, load, and cold (warm-up) start, as well as in the transient mode of multiple sharp increase in speed from nmin = 750 min–1 to nmax = 5600 min–1 and back. To capture polycyclic aromatic hydrocarbons in the flow of engine exhaust gases, a setup was devised whose operation principle is based on aspiration of gases through sorbents with a well-developed surface. It is shown that the emission of most polycyclic aromatic hydrocarbons during engine running in the main modes of vehicle operation is many times greater (for individual compounds, for example, benzo(a)pyrene and benz(a)anthracene, tens or even hundreds of times) than the reference value established by the World Health Organization and the European Environment Agency for atmospheric air in populated areas. With an increase in the octane number of gasoline, the concentration of highly carcinogenic polycyclic aromatic hydrocarbons (benzo(a)pyrene and benz(a)anthracene) in exhaust gases decreases, but remains within the limits threatening the human life and health.
引用
收藏
页码:362 / 372
页数:10
相关论文
共 50 条
  • [1] Combustion in a spark-ignition engine
    Kodah, ZH
    Soliman, HS
    Abu Qudais, M
    Jahmany, ZA
    APPLIED ENERGY, 2000, 66 (03) : 237 - 250
  • [2] Investigation on combustion and emissions of DME/gasoline mixtures in a spark-ignition engine
    Ji, Changwei
    Liang, Chen
    Wang, Shuofeng
    FUEL, 2011, 90 (03) : 1133 - 1138
  • [3] Influence of Swirl Flow on Combustion and Emissions in Spark-Ignition Experimental Engine
    Sjeric, Momir
    Krajnovic, Josip
    Vucetic, Ante
    Kozarac, Darko
    JOURNAL OF ENERGY ENGINEERING, 2021, 147 (04)
  • [4] UNBURNED HYDROCARBONS IN A SPARK-IGNITION ENGINE CYLINDER
    HAMAMOTO, Y
    WAKISAKA, T
    TOMITA, E
    NAKATA, T
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1985, 28 (237): : 461 - 467
  • [5] THE EFFECT OF SWIRL ON SPARK-IGNITION ENGINE COMBUSTION
    HAMAMOTO, Y
    TOMITA, E
    TANAKA, Y
    KATAYAMA, T
    TAMURA, Y
    JSME INTERNATIONAL JOURNAL, 1987, 30 (270): : 1995 - 2002
  • [6] Impact assessment of acetylene fueling on the performance, emissions, and combustion of a spark-ignition engine
    Sharma, Sumit
    Sharma, Dilip
    Singh, Digambar
    Sharma, Pushpendra Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [7] EFFECTS OF KNOCK ON HYDROCARBON EMISSIONS OF A SPARK-IGNITION ENGINE
    DAVIS, HP
    UYEHARA, AO
    MYERS, PS
    SAE TRANSACTIONS, 1969, 78 : 79 - &
  • [8] COMBUSTION PROCESS IN A DIVIDED CHAMBER SPARK-IGNITION ENGINE
    KATAOKA, K
    HIRAKO, Y
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1982, 25 (210): : 1945 - 1952
  • [9] A CFD study on the effect of compression ratio on combustion characteristics and emissions in a spark-ignition engine
    Gupta, Sachin Kumar
    Mittal, Mayank
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2020, 20 (05): : 299 - 306
  • [10] Diagnosis of hydrous ethanol combustion in a spark-ignition engine
    Rufino, Caio H.
    Gallo, Waldyr L. R.
    Ferreira, Janito, V
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (01) : 245 - 259