Semantic segmentation of hyperspectral images using convolutional neural networks and the attention mechanism

被引:0
|
作者
Gribanov, Danil Nikolaevich [1 ]
Mukhin, Artem Vladimirovich [1 ]
Kilbas, Igor Alexandrovich [1 ]
Paringer, Rustam Alexandrovich [2 ]
机构
[1] Samara Natl Res Univ, Res Lab Photon Smart Home & Smart City, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Samara Natl Res Univ, Tech Cybernet Dept, Moskovskoye Shosse 34, Samara 443086, Russia
关键词
semantic segmentation; attention mechanism; hyperspectral data; neural network; machine learning; CLASSIFICATION;
D O I
10.18287/2412-6179-CO-1371
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper investigates an effect of the attention mechanism on the accuracy of hyperspectral image segmentation by convolutional neural networks in agriculture. The study compares two modifications of neural network architectures: with and without the attention mechanism. The attention mechanism is implemented as two modules: position-based (PAM) and channel-based (CAM). The positional module (PAM) considers the global context using information about the spatial domain of the whole image. The channel module (CAM) in turn takes into account the information of all spectral components. L2Net and U-Net architectures are used for a comparative study. Modified versions with the addition of the attention mechanism are developed: L2AT-Net and ULAT-Net. The experimental results show that adding the attention mechanism to the U-Net and L2Net architectures increases the mean value of the F1 metric from 0.80 to 0.83 and from 0.74 to 0.78, respectively. The results show that the application of the attention mechanism can improve the quality of semantic segmentation of hyperspectral images.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks
    A. Mukhin
    G. Danil
    R. Paringer
    Optical Memory and Neural Networks, 2022, 31 : 38 - 47
  • [2] Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks
    Mukhin, A.
    Danil, G.
    Paringer, R.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2022, 31 (SUPPL 1) : 38 - 47
  • [3] Segmentation of hyperspectral images using quantized convolutional neural networks
    Lorenzo, Pablo Ribalta
    Marcinkiewicz, Michal
    Nalepa, Jakub
    2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), 2018, : 260 - 267
  • [4] Semantic segmentation of satellite images of airports using convolutional neural networks
    Gorbachev, V. A.
    Krivorotov, I. A.
    Markelov, A. O.
    Kotlyarova, E., V
    COMPUTER OPTICS, 2020, 44 (04) : 636 - +
  • [5] Semantic Segmentation of Marine Radar Images using Convolutional Neural Networks
    Kim, Keunhwan
    Kim, Jinwhan
    OCEANS 2019 - MARSEILLE, 2019,
  • [6] Semantic Face Segmentation Using Convolutional Neural Networks With a Supervised Attention Module
    Hizukuri, Akiyoshi
    Hirata, Yuto
    Nakayama, Ryohei
    IEEE ACCESS, 2023, 11 : 116892 - 116902
  • [7] Semantic segmentation on small datasets of satellite images using convolutional neural networks
    Younis, Mohammed Chachan
    Keedwell, Edward
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [8] Semantic Segmentation of Aerial Images With Shuffling Convolutional Neural Networks
    Chen, Kaiqiang
    Fu, Kun
    Yan, Menglong
    Gao, Xin
    Sun, Xian
    Wei, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (02) : 173 - 177
  • [9] Semantic segmentation of mFISH images using convolutional networks
    Pardo, Esteban
    Morgado, Jose Mario T.
    Malpica, Norberto
    CYTOMETRY PART A, 2018, 93A (06) : 620 - 627
  • [10] Semantic Segmentation of Bioimages Using Convolutional Neural Networks
    Wiehman, Stiaan
    de Villiers, Hendrik
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 624 - 631