Multi-Modal Fusion for Enhanced Automatic Modulation Classification

被引:0
|
作者
Li, Yingkai [1 ]
Wang, Shufei [1 ]
Zhang, Yibin [1 ]
Huang, Hao [1 ]
Wang, Yu [1 ]
Zhang, Qianyun [2 ]
Lin, Yun [3 ]
Gui, Guan [1 ]
机构
[1] NJUPT, Coll Telecommun & Informat Engn, Nanjing, Peoples R China
[2] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
[3] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
关键词
Automatic modulation classification; multimodal feature fusion; convolutional neural networks; long-short range attention;
D O I
10.1109/VTC2024-SPRING62846.2024.10683086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of emerging 6G technology challenges, this paper introduces the LSMFF-AMC approach, leveraging multimodal feature fusion (MFF) with Long-Short range attention (LSRA) to enhance automatic modulation classification(AMC). The method significantly boosts classification accuracy by employing convolutional neural networks (CNN) for diverse modal feature extraction and integrating LSRA for comprehensive feature combination. Our experiments demonstrate an increase in accuracy from 88% to nearly 97%, outperforming traditional single-modal approaches. Additionally, a convergence analysis of the training loss function reveals LSMFF-AMC's superior and faster convergence compared to standard AMC methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MM-Net: A Multi-Modal Approach Toward Automatic Modulation Classification
    Triaridis, Konstantinos
    Doumanidis, Constantine
    Chatzidiamantis, Nestor D.
    Karagiannidis, George K.
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (02) : 328 - 331
  • [2] Improved Sentiment Classification by Multi-modal Fusion
    Gan, Lige
    Benlamri, Rachid
    Khoury, Richard
    2017 THIRD IEEE INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2017), 2017, : 11 - 16
  • [3] An automatic fusion algorithm for multi-modal medical images
    Aktar, Mst. Nargis
    Lambert, Andrew J.
    Pickering, Mark
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (05): : 584 - 598
  • [4] Multi-modal Fusion Based Automatic Pain Assessment
    Zhi, Ruicong
    Yu, Junwei
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1378 - 1382
  • [5] Research on Emotion Classification Based on Multi-modal Fusion
    Xiang, Zhihua
    Radzi, Nor Haizan Mohamed
    Hashim, Haslina
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (02) : 548 - 560
  • [6] Image and Encoded Text Fusion for Multi-Modal Classification
    Gallo, I.
    Calefati, A.
    Nawaz, S.
    Janjua, M. K.
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 203 - 209
  • [7] Combining Knowledge and Multi-modal Fusion for Meme Classification
    Zhong, Qi
    Wang, Qian
    Liu, Ji
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 599 - 611
  • [8] MULTI-MODAL INFORMATION FUSION FOR CLASSIFICATION OF KIDNEY ABNORMALITIES
    Varsha, S.
    Nasser, Sahar Almahfouz
    Bala, Gouranga
    Kurian, Nikhil Cherian
    Sethi, Amit
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING CHALLENGES (IEEE ISBI 2022), 2022,
  • [9] Multi-modal Fusion
    Liu, Huaping
    Hussain, Amir
    Wang, Shuliang
    INFORMATION SCIENCES, 2018, 432 : 462 - 462
  • [10] News video classification based on multi-modal information fusion
    Lie, WN
    Su, CK
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1021 - 1024