Using Machine Learning to Derive Neurobiological Subtypes of General Psychopathology in Late Childhood

被引:0
|
作者
Reimann, Gabrielle E. [1 ]
Dupont, Randolph M. [2 ]
Sotiras, Aristeidis [3 ,4 ]
Earnest, Tom [3 ,4 ]
Jeong, Hee Jung [1 ]
Durham, E. Leighton [1 ]
Archer, Camille [1 ]
Moore, Tyler M. [5 ]
Lahey, Benjamin B. [6 ,7 ]
Kaczkurkin, Antonia N. [1 ]
机构
[1] Vanderbilt Univ, Coll Arts & Sci, Dept Psychol, PMB 407817, 2301 Vanderbilt Pl, Nashville, TN 37240 USA
[2] Univ Nevada, Dept Psychol, Las Vegas, NV USA
[3] Washington Univ St Louis, Dept Radiol, St Louis, MO USA
[4] Washington Univ St Louis, Inst Informat Data Sci & Biostat, St Louis, MO USA
[5] Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA USA
[6] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL USA
[7] Univ Chicago, Dept Psychiat & Behav Neurosci, Chicago, IL USA
来源
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
machine learning subtypes; general psychopathology; internalizing; conduct problems; attention-deficit/hyperactivity disorder; HETEROGENEITY; SCHIZOPHRENIA; DISORDER; ANXIETY;
D O I
10.1037/abn0000898
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Traditional mental health diagnoses rely on symptom-based classifications. Yet this approach can oversimplify clinical presentations as diagnoses often do not adequately map onto neurobiological features. Alternatively, our study used structural imaging data and a semisupervised machine learning technique, heterogeneity through discriminative analysis, to identify neurobiological subtypes in 9- to 10-year-olds with high psychopathology endorsements (n = 9,027). Our model revealed two stable neurobiological subtypes (adjusted Rand index = 0.38). Subtype 1 showed smaller structural properties, elevated conduct problems and attention-deficit/hyperactivity disorder symptoms, and impaired cognitive performance compared to Subtype 2 and typically developing youth. Subtype 2 had larger structural properties, cognitive abilities comparable to typically developing youth, and elevated internalizing symptoms relative to Subtype 1 and typically developing youth. These subtypes remained stable in their neurobiological characteristics, cognitive ability, and associated psychopathology traits over time. Taken together, our data-driven approach uncovered evidence of neural heterogeneity as demonstrated by structural patterns that map onto divergent profiles of psychopathology symptoms and cognitive performance in youth.
引用
收藏
页码:647 / 655
页数:9
相关论文
共 50 条
  • [1] MACHINE LEARNING TO UNDERSTAND SUBTYPES OF CHILDHOOD WHEEZING
    Belgrave, Danielle
    PEDIATRIC PULMONOLOGY, 2016, 51 : S23 - S23
  • [2] Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization: An International Machine Learning Study
    Chen, Ji
    Patil, Kaustubh R.
    Weis, Susanne
    Sim, Kang
    Nickl-Jockschat, Thomas
    Zhou, Juan
    Aleman, Andre
    Sommer, Iris E.
    Liemburg, Edith J.
    Hoffstaedter, Felix
    Habel, Ute
    Derntl, Birgit
    Liu, Xiaojin
    Fischer, Jona M.
    Kogler, Lydia
    Regenbogen, Christina
    Diwadkar, Vaibhav A.
    Stanley, Jeffrey A.
    Riedl, Valentin
    Jardri, Renaud
    Gruber, Oliver
    Sotiras, Aristeidis
    Davatzikos, Christos
    Eickhoff, Simon B.
    Bartels-Velthuis, Agna A.
    Bruggeman, Richard
    Castelein, Stynke
    Jorg, Frederike
    Pijnenborg, Gerdina H. M.
    Knegtering, Henderikus
    Visser, Ellen
    BIOLOGICAL PSYCHIATRY, 2020, 87 (03) : 282 - 293
  • [3] Using Genetics to Examine a General Liability to Childhood Psychopathology
    Riglin, Lucy
    Thapar, Ajay K.
    Leppert, Beate
    Martin, Joanna
    Richards, Alexander
    Anney, Richard
    Davey Smith, George
    Tilling, Kate
    Stergiakouli, Evie
    Lahey, Benjamin B.
    O'Donovan, Michael C.
    Collishaw, Stephan
    Thapar, Anita
    BEHAVIOR GENETICS, 2020, 50 (04) : 213 - 220
  • [4] Using Genetics to Examine a General Liability to Childhood Psychopathology
    Lucy Riglin
    Ajay K. Thapar
    Beate Leppert
    Joanna Martin
    Alexander Richards
    Richard Anney
    George Davey Smith
    Kate Tilling
    Evie Stergiakouli
    Benjamin B. Lahey
    Michael C. O’Donovan
    Stephan Collishaw
    Anita Thapar
    Behavior Genetics, 2020, 50 : 213 - 220
  • [5] Subtypes in Late Childhood and Their Relation to Psychopathology and Substance-Use Initiation During Early Adolescence: An ABCD Study
    Brucar, Leyla
    Zheng, Zixuan
    Maxwell, Andrea
    Zilverstand, Anna
    NEUROPSYCHOPHARMACOLOGY, 2024, 49 : 69 - 69
  • [6] Late Breaking Abstract - Unsupervised machine learning of novel emphysema subtypes: SPIROMICS
    Yang, Jie
    Angelina, Elsa
    Balte, Pallavi
    Hoffman, Eric
    Austin, John
    Ben Smith
    Bleecker, Eugene
    Bowler, Russ
    Cooper, Chris
    Couper, David
    Dransfield, Mark
    Han, Meilan
    Hansel, Nadia
    Martinez, Fernando
    Paine, Robert
    Woodruff, Prescott
    Ortega, Victor
    Laine, Andrew
    Barr, R. Graham
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [7] Diagnosis of Schizophrenia and Its Subtypes Using MRI and Machine Learning
    Tavakoli, Hosna
    Rostami, Reza
    Shalbaf, Reza
    Nazem-Zadeh, Mohammad-Reza
    BRAIN AND BEHAVIOR, 2025, 15 (01):
  • [8] Identification of hypertension subtypes using microRNA profiles and machine learning
    Reel, Smarti
    Reel, Parminder S.
    Van Kralingen, Josie
    Larsen, Casper K.
    Robertson, Stacy
    MacKenzie, Scott M.
    Riddell, Alexandra
    McClure, John D.
    Lamprou, Stelios
    Connell, John M. C.
    Amar, Laurence
    Pecori, Alessio
    Tetti, Martina
    Pamporaki, Christina
    Kabat, Marek
    Ceccato, Filippo
    Kroiss, Matthias
    Dennedy, Michael C.
    Stell, Anthony
    Deinum, Jaap
    Mulatero, Paolo
    Reincke, Martin
    Gimenez-Roqueplo, Anne-Paule
    Assie, Guillaume
    Blanchard, Anne
    Beuschlein, Felix
    Rossi, Gian Paolo
    Eisenhofer, Graeme
    Zennaro, Maria-Christina
    Jefferson, Emily
    Davies, Eleanor
    EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2025, 192 (04) : 418 - 428
  • [9] Identification of chronic urticaria subtypes using machine learning algorithms
    Turk, Murat
    Ertas, Ragip
    Zeydan, Engin
    Turk, Yekta
    Atasoy, Mustafa
    Gutsche, Annika
    Maurer, Marcus
    ALLERGY, 2022, 77 (01) : 323 - 326
  • [10] Differentiation of DCM Subtypes by using Cardiac MRI and Machine Learning
    von Knobelsdorff, Florian
    KARDIOLOGIE, 2022, 16 (05): : 353 - 355