A satellite cell-dependent epigenetic fingerprint in skeletal muscle identity genes after lifelong physical activity

被引:0
|
作者
Murach, Kevin A. [1 ]
Englund, Davis A. [2 ]
Chambers, Toby L. [1 ]
Dungan, Cory M. [3 ]
Porter, Hunter L. [4 ]
Wren, Jonathan D. [4 ]
Freeman, Willard M. [4 ,5 ]
Dupont-Versteegden, Esther E. [6 ,7 ]
Wen, Yuan [6 ,8 ,9 ]
机构
[1] Univ Arkansas, Exercise Sci Res Ctr, Dept Hlth Human Performance & Recreat, Mol Muscle Mass Regulat Lab, Fayetteville, AR 72701 USA
[2] Univ Alabama Birmingham, Dept Med, Birmingham, AL USA
[3] Baylor Univ, Dept Hlth Human Performance & Recreat, Waco, TX USA
[4] Oklahoma Med Res Fdn, Genes & Human Dis Program, Oklahoma City, OK USA
[5] Oklahoma City Vet Affairs Med Ctr, Oklahoma City, OK USA
[6] Univ Kentucky, Ctr Muscle Biol, Lexington, KY 40506 USA
[7] Univ Kentucky, Dept Phys Therapy, Lexington, KY USA
[8] Univ Kentucky, Dept Physiol, Lexington, KY USA
[9] Univ Kentucky, Dept Internal Med, Div Biomed Informat, Lexington, KY USA
来源
FASEB JOURNAL | 2025年 / 39卷 / 05期
基金
美国国家卫生研究院;
关键词
DNA methylation; methylome; stem cells; wheel running;
D O I
10.1096/fj.202500177R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Satellite cells comprise a small proportion of mononuclear cells in adult skeletal muscle. Despite their relative rarity, satellite cells have critical functions in muscle adaptation, particularly during prolonged exercise training. The mechanisms by which satellite cells mediate skeletal muscle responsiveness to physical activity throughout the lifespan are still being defined, but epigenetic regulation may play a role. To explore this possibility, we analyzed global DNA methylation patterns in muscle tissue from female mice that engaged in lifelong voluntary unweighted wheel running with or without satellite cells. Satellite cells were ablated in adulthood using the tamoxifen-inducible Pax7-DTA model. Compared to sedentary mice, wheel running for 13 months caused muscle DNA methylation differences in the promoter regions of numerous muscle fiber-enriched genes-Cacgn1, Dnm2, Mlip, Myl1, Myom2, Mstn, Sgca, Sgcg, Tnnc1, Tnni2, Tpm1, and Ttn-only when satellite cells were present. These genes relate to muscle fiber identity, cytoarchitecture, and size as well as overall muscle function. Epigenetic alterations to such genes are consistent with previously observed histological and in vivo impairments to running adaptation after satellite cell depletion in these same mice. Musk promoter region methylation was affected only in the absence of satellite cells with lifelong running relative to sedentary; this dovetails with work showing that satellite cells influence skeletal muscle innervation. Defining the epigenetic effects of satellite cells on identity genes in muscle fibers after lifelong physical activity provides new directions for how these rare stem cells can promote muscle adaptation and function throughout the lifespan.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Lifelong Physical Activity Modulation of the Skeletal Muscle Mitochondrial Proteome in Mice
    Alves, Renato M. P.
    Vitorino, Rui
    Figueiredo, Pedro
    Duarte, Jose Alberto
    Ferreira, Rita
    Amado, Francisco
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2010, 65 (08): : 832 - 842
  • [2] Satellite cell activity in human skeletal muscle
    Smith, H. K.
    Storey, A. G.
    Blyth, P.
    BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2008, 86 (02): : 208 - 208
  • [3] BMP signaling regulates satellite cell-dependent postnatal muscle growth
    Stantzou, Amalia
    Schirwis, Elija
    Swist, Sandra
    Alonso-Martin, Sonia
    Polydorou, Ioanna
    Zarrouki, Faouzi
    Mouisel, Etienne
    Beley, Cyriaque
    Julien, Anais
    Le Grand, Fabien
    Garcia, Luis
    Colnot, Celine
    Birchmeier, Carmen
    Braun, Thomas
    Schuelke, Markus
    Relaix, Frederic
    Amthor, Helge
    DEVELOPMENT, 2017, 144 (15): : 2737 - 2747
  • [4] Epigenetic regulation of satellite cell fate during skeletal muscle regeneration
    Massenet, Jimmy
    Gardner, Edward
    Chazaud, Benedicte
    Dilworth, F. Jeffrey
    SKELETAL MUSCLE, 2021, 11 (01)
  • [5] Epigenetic regulation of satellite cell fate during skeletal muscle regeneration
    Jimmy Massenet
    Edward Gardner
    Bénédicte Chazaud
    F. Jeffrey Dilworth
    Skeletal Muscle, 11
  • [6] A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy
    Mitchell, PO
    Pavlath, GK
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 281 (05): : C1706 - C1715
  • [7] SARCOPENIA AND AGED SKELETAL MUSCLE HYPERTROPHY ARE INDEPENDENT OF LIFELONG SATELLITE-CELL DEPLETION
    Lee, J. D.
    Mula, J.
    Fry, C.
    Kirby, T.
    Beggs, J.
    Campbell, M.
    McCarthy, J.
    Peterson, C. A.
    GERONTOLOGIST, 2013, 53 : 131 - 132
  • [8] LIFELONG SATELLITE-CELL DEPLETION DOES NOT INFLUENCE SARCOPENIA OR AGED SKELETAL MUSCLE HYPERTROPHY
    Lee, J. D.
    Mula, J.
    Fry, C.
    Kirby, T.
    Beggs, J.
    Campbell, M.
    McCarthy, J.
    Peterson, C. A.
    GERONTOLOGIST, 2013, 53 : 531 - 531
  • [9] Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning
    Sillanpaa, Elina
    Heikkinen, Aino
    Kankaanpaa, Anna
    Paavilainen, Aini
    Kujala, Urho M.
    Tammelin, Tuija H.
    Kovanen, Vuokko
    Sipila, Sarianna
    Pietilainen, Kirsi H.
    Kaprio, Jaakko
    Ollikainen, Miina
    Laakkonen, Eija K.
    CLINICAL EPIGENETICS, 2021, 13 (01)
  • [10] Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning
    Elina Sillanpää
    Aino Heikkinen
    Anna Kankaanpää
    Aini Paavilainen
    Urho M. Kujala
    Tuija H. Tammelin
    Vuokko Kovanen
    Sarianna Sipilä
    Kirsi H. Pietiläinen
    Jaakko Kaprio
    Miina Ollikainen
    Eija K. Laakkonen
    Clinical Epigenetics, 2021, 13