An RGB difference prior for aerial remote sensing image dehazing with a DCP enhancement learning network

被引:0
|
作者
Wei, Jianchong [1 ]
Yang, Kunping [2 ]
Wu, Yi [2 ]
Chen, Chengbin [3 ]
机构
[1] Fujian Jiangxia Univ, Coll Elect & Informat Sci, Fuzhou, Peoples R China
[2] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350117, Peoples R China
[3] Peng Cheng Lab, Dept Math & Theories, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Aerial remote sensing; image dehazing; dark channel prior; convolutional neural network; SINGLE; FRAMEWORK;
D O I
10.1080/01431161.2025.2475523
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Hazy conditions significantly impair the utility of aerial remote sensing (ARS) images. Although existing dehazing methods show promising results, their effectiveness is often limited by unclear assumptions about the degradation principles. In this paper, we propose a novel dehazing prior, termed the RGB Difference Prior (RGB-DP), which is based on image channel differences and complements the dark channel prior (DCP). The RGB-DP demonstrates broader applicability across various hazy scenarios, including clear sky conditions. In addition, we design a DCP Enhancement Learning Network (DEL-Net) with two distinct branches: an enhancement (ENC) branch and a prior branch. The ENC branch is designed to mathematically reinforce the prior branch, which aids in preserving details. The two branches are integrated to recover haze-free images through a supervised training process. To further improve performance, we propose a new RGB Difference Loss (RGB-DL), which reduces errors arising from inaccurate DCP assumptions. Experimental results on the proposed ARS Road Extraction Hazy Dataset (REHD) and the SateHaze1k dataset demonstrate that our method achieves the highest average PSNR of 27.31 dB and SSIM of 0.888. Additionally, real-world image dehazing tests highlight the superior generalizability of our method.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] DYNAMIC MUTUAL ENHANCEMENT NETWORK FOR SINGLE REMOTE SENSING IMAGE DEHAZING
    Wang, Shan
    Zhang, Libao
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3336 - 3340
  • [2] RSID: A Remote Sensing Image Dehazing Network
    Li, Yuan
    Zhao, Yafeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 3 - 14
  • [3] Single Remote Sensing Image Dehazing Using a Prior-Based Dense Attentive Network
    Gu, Ziqi
    Zhan, Zongqian
    Yuan, Qiangqiang
    Yan, Li
    REMOTE SENSING, 2019, 11 (24)
  • [4] Remote Sensing Image Dehazing Using Heterogeneous Atmospheric Light Prior
    He, Yufeng
    Li, Cuili
    Li, Xu
    IEEE ACCESS, 2023, 11 : 18805 - 18820
  • [5] A new deep learning architecture for dehazing of aerial remote sensing images
    Kalra, Abhi
    Sequeira, Aaron
    Manjunath, Aditya
    Lal, Shyam
    Raghavendra, B. S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43639 - 43655
  • [6] A new deep learning architecture for dehazing of aerial remote sensing images
    Abhi Kalra
    Aaron Sequeira
    Aditya Manjunath
    Shyam Lal
    Raghavendra BS
    Multimedia Tools and Applications, 2022, 81 : 43639 - 43655
  • [7] ICL-Net: Inverse Cognitive Learning Network for Remote Sensing Image Dehazing
    Dong, Weida
    Wang, Chunyan
    Xu, Xiping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16180 - 16191
  • [8] A Framework for Outdoor RGB Image Enhancement and Dehazing
    Chaudhry, Alina Majeed
    Riaz, Muhammad Mohsin
    Ghafoor, Abdul
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (06) : 932 - 936
  • [9] Remote sensing image dehazing using generative adversarial network with texture and color space enhancement
    Shen, Helin
    Zhong, Tie
    Jia, Yanfei
    Wu, Chunming
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] A saliency guided remote sensing image dehazing network model
    Shi, Zhenghao
    Shao, Shuai
    Zhou, Zhaorun
    IET IMAGE PROCESSING, 2022, 16 (09) : 2483 - 2494