Complexity of Well-Ordered Sets in an Ordered Abelian Group

被引:0
|
作者
Hall, Chris [1 ]
Knight, Julia [2 ]
Lange, Karen [3 ]
机构
[1] Western Univ, London, ON N6A 3K7, Canada
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Wellesley Coll, Wellesley, MA 02481 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:XXXII / XXXII
页数:1
相关论文
共 50 条
  • [1] WELL-ORDERED SETS IN LINEARLY ORDERED SEMIGROUPS
    ZHOZHIKASHVILI, AV
    LOGINOV, VI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (03): : 57 - 61
  • [2] UNIONS OF WELL-ORDERED SETS
    HOWARD, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 : 117 - 124
  • [3] On well-ordered sets.
    Schoenflies, A
    MATHEMATISCHE ANNALEN, 1905, 60 : 181 - 186
  • [4] REGRESSIVE AND DIVERGENT FUNCTIONS ON ORDERED AND WELL-ORDERED SETS
    MATE, A
    ACTA SCIENTIARUM MATHEMATICARUM, 1972, 33 (3-4): : 285 - 293
  • [5] COUNTABLE FAMILIES OF WELL-ORDERED SETS
    UNGAR, P
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (07): : 836 - &
  • [6] A THEOREM ON INJECTIONS INTO WELL-ORDERED SETS
    ROTMAN, B
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (08): : 423 - &
  • [7] MAPPING THEOREM FOR COUNTABLE WELL-ORDERED SETS
    ROTMAN, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (JUL): : 509 - &
  • [9] Partially Well-Ordered Closed Sets of Permutations
    M. D. Atkinson
    M. M. Murphy
    N. Ruškuc
    Order, 2002, 19 : 101 - 113
  • [10] Partially well-ordered closed sets of permutations
    Atkinson, MD
    Murphy, MM
    Ruskuc, N
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2002, 19 (02): : 101 - 113