Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation

被引:0
|
作者
Campos, Luccas [1 ]
Correia, Simao [2 ]
Farah, Luiz Gustavo [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Math, Ave Pres Antonio Carlos, 6627, Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Dept Math, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
基金
巴西圣保罗研究基金会;
关键词
Inhomogeneous Schr & ouml; dinger equation; Local well-posedness; Fractional Leibniz rule; Ill-posedness; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1016/j.nonrwa.2025.104336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem associated to the inhomogeneous nonlinear Schrodinger equation, iu(t )+ Delta u + mu|x|(-b)|u|(alpha)u = 0, u(0 )is an element of H-s(R-N) or u(0 )is an element of H-s(R-N), with mu = +/- 1, b > 0, s >= 0 and 0 < alpha <= 4-2b/N-2s (0 < alpha < infinity if s >= N/2). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.
引用
收藏
页数:21
相关论文
共 50 条