Study on the influence factors of rock breaking by supercritical CO2 thermal fracturing

被引:0
|
作者
Hu, Shao-Bin [1 ]
Zhang, Lin [1 ]
Cai, Yu-Kang [1 ]
Pang, Shuo-Gang [1 ]
Yan, Zheng-Yong [1 ]
Zhang, Qiang [2 ,3 ]
机构
[1] HoHai Univ, Tunnel & Underground Engn Inst, Coll Civil & Transportat Engn, Nanjing 210024, Jiangsu, Peoples R China
[2] POWERCHINA Huadong Engn Corp Ltd, Hangzhou 311122, Zhejiang, Peoples R China
[3] Powerchina Zhejiang Huadong Engn Consulting Corp L, Hangzhou 311122, Zhejiang, Peoples R China
关键词
Supercritical CO 2; Thermal fracturing; Phase change; Transient nonlinear flow; Multi-field coupled; UNCONVENTIONAL OIL; PHASE-CHANGE; SHALE GAS; PROPAGATION; FLUID; SIMULATION; INITIATION; MODEL; WATER;
D O I
10.1016/j.petsci.2024.07.028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
At present, there is a growing demand for safe and low-pollution rock-breaking technology. The rock breaking technology of supercritical CO2 thermal fracturing has many advantages, such as no dust noise, no explosion, high efficiency, controllable shock wave and so on. Fully considering the combustion rate of energetic materials, heat and mass transfer, CO2 phase change and transient nonlinear flow process, a multi-field coupled numerical model of rock breaking by supercritical CO2 thermal fracturing was established based on the existing experiments. The influence factors of CO2 thermal fracturing process were studied to provide theoretical guidance for site construction parameters optimization. The numerical simulation results were in good agreement with the experimental observation results. The results showed that the maximum temperature of CO2 and the growth rate of CO2 pressure during the fracturing process would decrease accordingly with the increase of CO2 initial pressure. But the change in CO2 peak pressure wasn't significant. Appropriately increasing the heat source power could improve the heating and pressurization rate of CO2 and accelerate the damage rate of rock. The relevant results were of great importance for promoting the application of rock breaking by supercritical CO2 thermal fracturing technology. (c) 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
引用
收藏
页码:4328 / 4343
页数:16
相关论文
共 50 条
  • [1] Experimental Study of Supercritical CO2 Fracturing Across Coal–Rock Interfaces
    Wei He
    Haojie Lian
    Weiguo Liang
    Pengfei Wu
    Yulong Jiang
    Xiaoxia Song
    Rock Mechanics and Rock Engineering, 2023, 56 : 57 - 68
  • [2] STUDY ON FRACTURE PROPAGATION OF HYDRAULIC AND SUPERCRITICAL CO2 FRACTURING IN DIFFERENT ROCK
    Zhu, Ruibin
    Tian, Ganghua
    Qu, Fengjiao
    Li, Ning
    Li, Gaofeng
    Long, Changjun
    Fan, Xuhao
    THERMAL SCIENCE, 2024, 28 (2A): : 1107 - 1112
  • [3] STUDY ON FRACTURE PROPAGATION OF HYDRAULIC AND SUPERCRITICAL CO2 FRACTURING IN DIFFERENT ROCK
    Zhu, Ruibin
    Tian, Ganghua
    Qu, Fengjiao
    Li, Ning
    Li, Gaofeng
    Long, Changjun
    Fan, Xuhao
    THERMAL SCIENCE, 2024, 28 (02): : 1107 - 1112
  • [4] Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress
    Zhang, Wei
    Wang, Chunguang
    Guo, Tiankui
    He, Jiayuan
    Zhang, Le
    Chen, Shaojie
    Qu, Zhanqing
    ENERGY, 2021, 221
  • [5] Revealing the effects of thermal properties of supercritical CO2 on proppant migration in supercritical CO2 fracturing
    Liu, Boyu
    Yao, Jun
    Sun, Hai
    Zhang, Lei
    GAS SCIENCE AND ENGINEERING, 2024, 121
  • [6] Experimental Study of Supercritical CO2 Fracturing Across Coal-Rock Interfaces
    He, Wei
    Lian, Haojie
    Liang, Weiguo
    Wu, Pengfei
    Jiang, Yulong
    Song, Xiaoxia
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (01) : 57 - 68
  • [7] Supercritical CO2 thermal shock rock breaking technology: fracture principle and vibration safety
    Wang X.
    Hu S.
    Wang E.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2023, 56 (08): : 118 - 130
  • [8] Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology
    Sun X.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2021, 49 (08): : 81 - 87
  • [9] Analysis of mechanisms of supercritical CO2 fracturing
    Wang Hai-Zhu
    Li Gen-sheng
    He Zhen-guo
    Shen Zhong-hou
    Li Xiao-jiang
    Zhang Zhen-xiang
    Wang Meng
    Yang Bing
    Zheng Yong
    Shi Lu-jie
    ROCK AND SOIL MECHANICS, 2018, 39 (10) : 3589 - 3596
  • [10] Supercritical CO2 Permeability in Rock: An Experiment Study
    Ye, Bin
    Ni, Xueqian
    Zhang, Yadong
    Ye, Weimin
    PROCEEDINGS OF GEOSHANGHAI 2018 INTERNATIONAL CONFERENCE: MULTI-PHYSICS PROCESSES IN SOIL MECHANICS AND ADVANCES IN GEOTECHNICAL TESTING, 2018, : 280 - 288