Searching for dark matter subhalos in the Fermi-LAT catalog with Bayesian neural networks

被引:0
|
作者
Butter, Anja [1 ,2 ]
Kraemer, Michael [3 ]
Manconi, Silvia [3 ,4 ]
Nippel, Kathrin [3 ]
机构
[1] Univ Paris Cite, Sorbonne Univ, LPNHE, CNRS,N2P3, Paris, France
[2] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany
[3] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol, D-52056 Aachen, Germany
[4] USMB, CNRS, Lab Annecy Vieux Phys Theor LAPTh, F-74940 Annecy, France
关键词
dark matter simulations; gamma ray experiments; gamma ray theory; Machine learning;
D O I
10.1088/1475-7516/2023/07/033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
About a third of the gamma -ray sources detected by the Fermi Large Area Telescope (Fermi-LAT) remain unidentified, and some of these could be exotic objects such as dark matter subhalos. We present a search for these sources using Bayesian neural network classification methods applied to the latest 4FGL-DR3 Fermi-LAT catalog. We first simulate the gamma-ray properties of dark matter subhalos using models from N-body simulations and semi-analytical approaches to the subhalo distribution. We then assess the detectability of this sample in the 4FGL-DR3 catalog using the Fermi-LAT analysis tools. We train our Bayesian neural network to identify candidate dark matter subhalos among the unidentified sources in the 4FGL-DR3 catalog. Our results allow us to derive conservative bounds on the dark matter annihilation cross section by excluding unidentified sources classified as astrophysical-like by our networks. We estimate the number of candidate dark matter subhalos for different dark matter masses and provide a publicly available list for further investigation. Our bounds on the dark matter annihilation cross section are comparable to previous results and become particularly competitive at high dark matter masses.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Searching for dark matter subhalos in the Fermi-LAT second source catalog
    Belikov, Alexander V.
    Buckley, Matthew R.
    Hooper, Dan
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [2] Examining The Fermi-LAT Third Source Catalog in search of dark matter subhalos
    Bertoni, Bridget
    Hooper, Dan
    Linden, Tim
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (12):
  • [3] Searching for dark matter in Fermi-LAT unidentified sources with Neural Network
    Gammaldi, Viviana
    Coronado-Blazquez, J.
    Sanchez-Conde, M. A.
    Zaldivar, Bryan
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [4] Investigating the detection of dark matter subhalos as extended sources with Fermi-LAT
    Di Mauro, Mattia
    Stref, Martin
    Caloree, Francesca
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [5] Revisiting the search for dark matter subhalos using the Fermi-LAT 4FGL-DR4 catalog
    Cheng, Ji-Gui
    Zou, Le
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [6] Realistic estimation for the detectability of dark matter subhalos using Fermi-LAT catalogs
    Calore, Francesca
    De Romeri, Valentina
    Di Mauro, Mattia
    Donato, Fiorenza
    Marinacci, Federico
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [7] Searching for secluded dark matter with HESS, Fermi-LAT, and Planck
    Profumo, Stefano
    Queiroz, Farinaldo S.
    Silk, Joseph
    Siqueira, Clarissa
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03):
  • [8] Classification of Fermi-LAT blazars with Bayesian neural networks
    Butter, Anja
    Finke, Thorben
    Keil, Felicitas
    Kramer, Michael
    Manconi, Silvia
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (04):
  • [9] Unidentified sources in the Fermi-LAT second source catalog: the case for DM subhalos
    Zechlin, Hannes-S.
    Horns, Dieter
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (11):
  • [10] A new approach to searching for dark matter signals in Fermi-LAT gamma rays
    Chang, Spencer
    Goodenough, Lisa
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (08):