Symplectic codes over a non-unitary ring

被引:0
|
作者
Manseri, Sarra [1 ]
Betty, Rowena Alma [2 ]
Galvez, Lucky [2 ]
Sole, Patrick [3 ]
机构
[1] Cent China Normal Univ, Wuhan 430079, Peoples R China
[2] Univ Philippines Diliman, Inst Math, Quezon City 1101, Philippines
[3] Univ Aix Marseille, CNRS, I2M, F-13009 Marseilles, France
关键词
Non-unitary rings; symplectic codes; additive F-4-code; mass formula;
D O I
10.1142/S021949882541018X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the commutative non-unitary ring of order four defined as I = {a,b|2a = 0, 2b = 0,a(2) = b,ab = 0}. Self-orthogonal codes for a symplectic inner product over I are introduced. A mass formula to enumerate them under symplectic equivalence is given. An application is a classification of such codes in short lengths.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Symplectic ACD codes over a non-commutative non-unitary ring
    Manseri, Sarra
    Sole, Patrick
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [2] Symplectic ACD codes over a non-commutative non-unitary ringSymplectic ACD codes over a non-commutative non-unitary ringS. Manseri et al.
    Sarra Manseri
    Patrick Solé
    Computational and Applied Mathematics, 2025, 44 (3)
  • [3] The build up construction for codes over a non-commutative non-unitary ring of order 9
    Alahmadi, Adel
    Alihia, Tamador
    Sole, Patrick
    AIMS MATHEMATICS, 2024, 9 (07): : 18278 - 18307
  • [4] The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9
    Alahmadi, Adel
    Alihia, Tamador
    Alma Betty, Rowena
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [5] The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring
    Alahmadi, Adel
    Alshuhail, Altaf
    Sole, Patrick
    AIMS MATHEMATICS, 2023, 8 (10): : 24367 - 24378
  • [6] The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring
    Alahmadi, Adel
    Alshuhail, Altaf
    Betty, Rowena Alma
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [7] Entanglement Dissipation: Unitary and Non-unitary Processes
    Solomon, Allan I.
    SYMMETRIES IN SCIENCE XV, 2012, 380
  • [8] NON-UNITARY VALUATION SUBALGEBRAS
    RAND, DA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 29 (NOV) : 485 - 501
  • [9] Andreev Reflection in Unitary and Non-Unitary Triplet States
    Carsten Honerkamp
    Manfred Sigristt
    Journal of Low Temperature Physics, 1998, 111 : 895 - 915
  • [10] Unitary and non-unitary N = 2 minimal models
    Thomas Creutzig
    Tianshu Liu
    David Ridout
    Simon Wood
    Journal of High Energy Physics, 2019