Controlled Synthesis of Iron Oxide Nanoparticles via QBD for Biomedical Applications

被引:0
|
作者
Haghighizadeh, Atoosa [1 ]
Ghadiri, Sima [1 ]
Dadpour, Saba [1 ]
Amirinejad, Mostafa [2 ]
Etemad, Leila [3 ]
Rajabi, Omid [1 ,4 ]
机构
[1] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut Control, Mashhad, Iran
[2] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut, Mashhad, Iran
[3] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Targeted Drug Delivery Res Ctr, Mashhad, Iran
关键词
Iron Oxide Nanoparticles; Hydrothermal Method; Response Surface Methodology; Nanomedicine; HYDROTHERMAL SYNTHESIS; MAGNETIC-PROPERTIES; TEMPERATURE; SIZE; CHALLENGES; ROLES;
D O I
10.2174/0115734137336579241008054823
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction Iron oxide nanoparticles have gained significant attention in pharmaceutical applications because of their unique properties. The hydrothermal method is employed for the synthesis of iron nanoparticles [IONPs], which offers advantages such as uniform composition and size distribution.Method However, the size and properties of IONPs can be influenced by various factors. In this study, we utilized quality by design [QBD] via response surface methodology to investigate the impact of temperature, time, and pH on the size of hydrothermally prepared IONPs. The optimized synthesis conditions were determined, and the resulting nanoparticles were characterized using techniques such as dynamic light scattering [DLS], scanning electron microscopy [SEM], transmission electron microscopy [TEM], vibrating sample magnetometry [VSM], X-ray diffraction [XRD], and Fourier-transform infrared spectroscopy [FTIR].Results The findings contribute to a better understanding of the controlled synthesis of IONPs and their potential applications in nanomedicine. The XRD characterization revealed that the product was Fe3O4. The FTIR results indicate that Fe3O4 nanoparticles were coated with PEG-400. The SEM and HRTEM images of the Fe3O4 nanoparticles showed that they were spherical and had a well-distributed size with an optimized hydrodynamic size of 65 nm.Conclusion The magnetic properties of the Fe3O4 nanoparticles indicated that they exhibited ferromagnetic properties. These prepared nanoparticles are suitable for biomedical purposes, like serving as contrast agents for magnetic resonance imaging in different cancers and delivering drugs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synthesis and characterization of superparamagnetic iron oxide nanoparticles for biomedical applications
    L. A. Cano
    M. V. Cagnoli
    S. J. Stewart
    E. D. Cabanillas
    E. L. Romero
    S. G. Marchetti
    Hyperfine Interactions, 2010, 195 : 275 - 280
  • [2] Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications
    Debora Bonvin
    Heinrich Hofmann
    Marijana Mionic Ebersold
    Journal of Nanoparticle Research, 2016, 18
  • [3] Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs)
    Salehirozveh, Mostafa
    Dehghani, Parisa
    Mijakovic, Ivan
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (11)
  • [4] Synthesis and characterization of superparamagnetic iron oxide nanoparticles for biomedical applications
    Cano, L. A.
    Cagnoli, M. V.
    Stewart, S. J.
    Cabanillas, E. D.
    Romero, E. L.
    Marchetti, S. G.
    HYPERFINE INTERACTIONS, 2010, 195 (1-3): : 275 - 280
  • [5] Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
    Gupta, AK
    Gupta, M
    BIOMATERIALS, 2005, 26 (18) : 3995 - 4021
  • [6] Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications
    Bonvin, Debora
    Hofmann, Heinrich
    Ebersold, Marijana Mionic
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (12)
  • [7] Synthesis of radioluminescent iron oxide nanoparticles functionalized by anthracene for biomedical applications
    Arsalani, Soudabeh
    Oliveira, Jeferson
    Guidelli, Eder J.
    Araujo, Jefferson F. D. F.
    Wiekhorst, Frank
    Baffa, Oswaldo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 602 (602)
  • [8] Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications
    Maleki, H.
    Simchi, A.
    Imani, M.
    Costa, B. F. O.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (23) : 3997 - 4005
  • [9] Core-shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications
    Zhou, Lilin
    Yuan, Jinying
    Wei, Yen
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) : 2823 - 2840
  • [10] A Review on Iron Oxide Nanoparticles and Their Biomedical Applications
    P. Sangaiya
    R. Jayaprakash
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 3397 - 3413