Advanced ML Approaches to PGx Recommendations in Precision Medicine

被引:0
|
作者
Zastrozhin, Michael [1 ]
Gupta, Danika [2 ]
Talagala, Nisha [3 ]
Akram, Jason [4 ]
Grachev, Roman [5 ]
Gobbs, Allan [1 ]
Karaf, Nasreen [6 ]
Timoshenko, Alex [7 ]
机构
[1] PGxCare, Palo Alto, CA 94304 USA
[2] Harker Sch, San Jose, CA USA
[3] Pyxeda AI, Santa Clara, CA USA
[4] Stanford Univ, Stanford, CA USA
[5] Snap Inc, Santa Monica, CA USA
[6] Meta, Menlo Pk, CA USA
[7] Google, Mountain View, CA 94043 USA
关键词
pharmacogenetics; recommendations; CPIC; DPWG; machine learning; gradient boosting; xgboost;
D O I
10.1109/COMPSAC61105.2024.00245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a machine learning model to predict pharmacogenetic (PGx) guidelines using a novel dataset assembled from the PharmGKB knowledge base, incorporating chemical structure, genetic information and recommendation annotations. To facilitate modeling, free text recommendations were processed via domain expertise assisted NLP to create three categories: Standard Dose, Adjusted Dose, and Alternate Drug. We compared several models including Multi-Layer Perceptron, K Nearest Neighbors, Random Forest, Logistic Regression, Linear SVC, and XGBoost. XGBoost excelled, combining predictive power with explainability, achieving an accuracy of 89.14% and F1 scores from 0.85-0.90, with precision and recall of 0.83-0.97 and 0.82-0.97 respectively. Such models can accelerate PGx guidelines, enhancing personalized medicine in clinical settings.
引用
收藏
页码:1574 / 1575
页数:2
相关论文
共 50 条
  • [1] Nuclear medicine approaches for precision medicine in oncology
    Bailly, C.
    Bodet-Milin, C.
    Kraeber-Bodere, F.
    REVUE DE MEDECINE INTERNE, 2022, 43 : A2 - A253
  • [2] Advanced bioanalytics for precision medicine
    Aldo Roda
    Elisa Michelini
    Cristiana Caliceti
    Massimo Guardigli
    Mara Mirasoli
    Patrizia Simoni
    Analytical and Bioanalytical Chemistry, 2018, 410 : 669 - 677
  • [3] Advanced bioanalytics for precision medicine
    Roda, Aldo
    Michelini, Elisa
    Caliceti, Cristiana
    Guardigli, Massimo
    Mirasoli, Mara
    Simoni, Patrizia
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2018, 410 (03) : 669 - 677
  • [4] AI/ML in Precision Medicine: A Look Beyond the Hype
    Zhiheng Xu
    Bipasa Biswas
    Lin Li
    Billy Amzal
    Therapeutic Innovation & Regulatory Science, 2023, 57 : 957 - 962
  • [5] AI/ML in Precision Medicine: A Look Beyond the Hype
    Xu, Zhiheng
    Biswas, Bipasa
    Li, Lin
    Amzal, Billy
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2023, 57 (05) : 957 - 962
  • [6] Precision Medicine Approaches to Cardiac Arrhythmias
    Giudicessi, John R.
    Ackerman, Michael J.
    Fatkin, Diane
    Kovacic, Jason C.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (20) : 2573 - 2591
  • [7] Precision Medicine Approaches to Vascular Disease
    Miller, Clint L.
    Kontorovich, Amy R.
    Hao, Ke
    Ma, Lijiang
    Iyegbe, Conrad
    Bjorkegren, Johan L. M.
    Kovacic, Jason C.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (20) : 2531 - 2550
  • [8] Precision medicine for advanced prostate cancer
    Mullane, Stephanie A.
    Van Allen, Eliezer M.
    CURRENT OPINION IN UROLOGY, 2016, 26 (03) : 231 - 239
  • [9] Precision medicine in oncology- machine learning recommendations
    Ordak, Michal
    AMERICAN JOURNAL OF CANCER RESEARCH, 2023, 13 (04): : 1617 - 1619
  • [10] Precision Medicine Approaches for Treating Spina Bifida
    Corradetti, Bruna
    Fonteles, Crisiane R. S.
    Steele, John
    Wlodarczyk, Bogdan J.
    Ying, Lin
    Cabrera, Robert M.
    Finnell, Richard H.
    BIRTH DEFECTS RESEARCH, 2024, 116 : S34 - S34