Multi-view collaborative learning for graph attribute imputation

被引:0
|
作者
Yu, Yingxing [1 ]
Li, Huige [1 ]
Yang, Xibei [1 ]
Zhang, Yong [1 ]
Song, Jingjing [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view learning; Graph convolutional networks; Attribute imputation; Graph representation learning;
D O I
10.1007/s13042-024-02480-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-world applications, graph data often has missing attributes, is a challenging research task. Recently, attribute imputation methods based on multi-view networks have shown great potential in attribute-missing graphs. However, due to the missing attributes of certain nodes, existing methods for attribute-missing graphs can not effectively capture rich and complementary information between two views, thus limiting multi-view networks from learning high-quality attribute imputation. To address these problems, we propose a novel method named M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document}ulti-view cO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{O}$$\end{document}llaborative learning for graph attriB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}$$\end{document}ute imputA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}$$\end{document}tion(MOBA). Specifically, MOBA leverages a reliable augmentation strategy based on original graph relations, serving as a basis to aggregate attribute-observed neighboring node information. In the encoding stage, we introduce imbalanced encoders based on distinct propagation steps in different views, which effectively enhance the complementary information. Subsequently, to preserve more accurate node embeddings, MOBA introduces a multi-view collaborative learning strategy which aims to reduce the redundant information and maximize the consistency between two views. Extensive experiments on four benchmark datasets have demonstrated the effectiveness and superiority of our proposed MOBA over the state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-view graph imputation network
    Peng, Xin
    Cheng, Jieren
    Tang, Xiangyan
    Zhang, Bin
    Tu, Wenxuan
    INFORMATION FUSION, 2024, 102
  • [2] Modeling Multi-View Interactions with Contrastive Graph Learning for Collaborative Filtering
    Cheng, Zhangtao
    Walker, Joojo
    Zhong, Ting
    Zhou, Fan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Multi-View Attribute Graph Convolution Networks for Clustering
    Cheng, Jiafeng
    Wang, Qianqian
    Tao, Zhiqiang
    Xie, Deyan
    Gao, Quanxue
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2973 - 2979
  • [4] DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity
    Wei, Hang
    Gao, Lin
    Wu, Shuai
    Jiang, Yina
    Liu, Bin
    BIOINFORMATICS, 2024, 40 (05)
  • [5] Multi-view Bipartite Graph Clustering with Collaborative Regularization
    Zhang, Yong
    Zhu, Jiongcheng
    Jiang, Li
    Liu, Da
    Liu, Wenzhe
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 318 - 329
  • [6] Collaborative Unsupervised Multi-View Representation Learning
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4202 - 4210
  • [7] Essential multi-view graph learning for clustering
    Shuangxun Ma
    Qinghai Zheng
    Yuehu Liu
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 5225 - 5236
  • [8] Efficient Graph Based Multi-view Learning
    Hu, Hengtong
    Hong, Richang
    Fu, Weijie
    Wang, Meng
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 691 - 703
  • [9] Essential multi-view graph learning for clustering
    Ma, Shuangxun
    Zheng, Qinghai
    Liu, Yuehu
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 13 (11) : 5225 - 5236
  • [10] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144